PARITY NONCONSERVATION IN TRINUCLEON BOUND STATES
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Tensor and operator representations for wave function (WF) of three—nucleon bound states are discussed. It is
supposed that space parity is not conserved in interaction between nucleons. The WFs of *He and *H are expressed
in terms of 16 scalar functions, which depend on the magnitudes of the relative momenta and the angle between
them. These functions are real in the case when nuclear forces do not violate time reversal symmetry. Characteristic
features appropriate to WFs of deuteron and 3N nuclei in operator form (OF) are compared.
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1. INTRODUCTION

Properties of the three- and four-nucleon bound
states were investigated [1] by E. Gerjuoy and
J. Schwinger under the assumption that the nuclear
forces are invariant with respect to the space inversion.
Three—nucleon system of even parity and with the total
angular momentum [ =1/2 was considered in [1].

Trittum WF can be obtained [1] from the 3N spin
state that has zero spin in two—nucleon subsystem with

the help of a set of spin—angular operators g 1(5,5)
multiplied by scalar functions £, (][], 5-7). The

A A

operators g, are constructed from unit vectors p, 7
directed along the Jacobi coordinates p,77 and Pauli
matrices of nucleons. All three-nucleon states
22414, =285, 2Py, *Pyp, and 4Dy, with total orbital

momentum A=0,1,2 and total spin X =1/2,3/2, that

may appear in 3N bound state with ¥ =1/2*, are

generated by operators [1].

Relationship between the OF and the partial-wave
decompositions [2] of the WF was investigated in [3].
Eight scalar functions, needed to build up the WF, were
calculated for modern realistic models of nuclear forces.
Results of Ref. [3] can be used to compute WFs of *He
and *H nuclei in momentum space’ .

An OF for the WF was also derived in [4]
transforming WF [S] in tensor representation (TR).
Different sets of the operators are employed in [1,3]
and [4]. Operators and corresponding  scalar
functions [4] are linear combinations of ones defined
in [3]. WF in the TR [5] was used in [4] to calculate and
analyze structure of spin—dependent momentum
distributions of nucleons and proton—deuteron clusters
in 3N nuclei.

Parity—conserving nuclear forces and correspond-
ingly WFs of *He and *H nuclei with positive parity
were treated in Refs. [1,3-5]. Aim of this report is to

! The functions can be downloaded from
http://www.phy.ohiou.edu/~elster/h3wave/index.html
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incorporate into TR and OF for the WF contributions
due to parity violating interaction between nucleons.

2. TENSOR FORM OF THE 3N
BOUND - STATE WAVE FUNCTION
WF of the three-nucleon bound states |‘I’;1 m’> with
the total angular momentum / =1/2 and its projection
m' in TR reads [5]
WM (B, G)=23,1(P,@:SM, 1/ 2m[ W 1/2m'). (1)

Tensor (1) has 16 complex components.
Eq. (1) is written in the center of mass system of the
nucleus. The Jacobi momenta are

p=(ky—k3)/2, G=(ki—ky—k3)/3,
where lgi is the momentum of nucleon with number
i(i=1,2,3). The total spin S of the nucleons 2 and 3
takes on values 0 and 1. The spin states are defined as
— SM
|SM) 23= Zmymy Cll2my 1/2my |12 m2>2|1/2 ’"3>3’ )
where ng s 18 Clebsch-Gordan coefficient [6]. Vector

m

; describes nucleon i with the projection of spin
i'

The isospin formalism is not employed in the
present paper. The nucleon labeled by 1 is chosen to be
neutron (proton) for 3He(®H) nucleus. In turn,
nucleons 2 and 3 are protons (neutrons).

WF (1) transforms under the permutation (2,3) of
identical nucleons 2 and 3 according to

WSMmn(p,q) = (-1)SWsMm(-p,q). 3)
As far as we assume that interaction between nucle-

ons does not conserve space parity, nuclear states are
superpositions of terms with opposite parity:

|W;1/2m") = Yo, |W:1/2m"; N),
) P|‘P; 12m'"; N> = (—I)N|\P; 12m", N>, where P is the
space inversion operator. The components

YIS (p,q;N) =(p,g:SM, 12 m|W;12m'; N)  (4)
of WF (1), that have definite parity (—1)%, obey
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Yol (p,g; N) = (=DN Y51 (—p,~g; N). ®)
A consequence of (3) and (5) is
YIMm(p,q;N) = (=1)SN oMM (B,~g; N). (6)

Eqgs. (3), (5), (6) contain the WF values for the same
quantum numbers S,M,m,m' at different points in the
space of Jacobi momenta. These relations can be used to
control numerical calculations of the WF in TR (1).

In the case of time reversal invariant nuclear forces
the WF fulfills

SMim (35 ) = (—1)S+M +m—m'
Yo" (p,q) = (=12

S,—M ,— RN (7)
x (\P_m' " (_pB_Q)) .
Egs. (5) and (7) impose constraints
\IJSA/['m . = (=])S+M +m+m'+N
M (p,g: N) = () ©

(¥ (RN
Since in both sides of Eq. (8) the WF values are taken at
the same point of p,q—space, the components of ten-
sor (4) with m'=—1/2 can be obtained from ones having
m'=1/2. However, the total number of independent

functions, needed to built tensor (1), when time reversal
invariance holds, and space inversion symmetry is
violated, is not reduced by Eq. (8). In the next section
WF (1) will be constructed using minimal amount of
real scalar functions.

3. DECOMPOSITION OF THE WAVE
FUNCTION OVER POLARIZATION
OPERATORS

WE (1) is the set of four 2x2 matrices ®M(p,q),
defined as (12 m|®M (p,q)| 12 m') = ¥SMm (p,g).
The matrices can be decomposed over the complete

system of polarization operators (POs) TXM (s) for spin
s=12

OM (5,G) =2 Sxg a0 TV (5.G) TEM (12). 9)

Properties of the POs are discussed in [6-8]. In the
present report we follow conventions of Ref. [6]. The
contravariant POs are given by

TKM () = ()M Ty _(s).  The of the

covariant POs are

matrices

<s m|TKM (s)| K m’> = (2K+1)1/2(2s+1)_1/2 KM -
Tensor W™, .(p,§) is to be constructed from the

Jacobi momenta p,q. The component of the tensor
with § =K =0 is a scalar function

P20 00(5:0) =1 (p:4,€), (E=D-§) (10)

where a unit vector jl =A/ | A |. Below we denote
v, =w,(p.q.5), where A=l,2,....
Tensors WSM,, (p,§) with S=0, K=l or S=1, K=0,
which are equivalent to three-vectors, can be written as
PO (P.@) =2V wa + Py +quwio: (11)

WM (5,0) =V2 VM ys+ pMyy +¢My,,  (12)

where V', = {i?@é}lM.
Irreducible tensor product that has rank J of two ir-
reducible tensors A, and By is [6]

{4,©Bp} v = Zaaee CPp o Apage Broge- (13)

The contravariant and covariant components of (13) are
related by

{47 ®B/"}M = (-1)M {4, ®BJ..}J’_M.
Structure of the reducible tensor ?SZ}QZIL w (D)

can be determined from decomposition

TM{M' (pa 7) = ZkZO,l,Z;K Wi (p, 7)

14

x(IM | THhe(1)| 1M), (1
where, similarly to Eqs. (10)—(12), one has

k=0 woo(p,g)="3y's; (15)

k=1: WlM(ﬁ,q):ZV'M V/'S (16)

=2 pywiz =2 quys.
Term w,,.(p,q) in (14) receives contributions from

irreducible tensor products of rank two, which are quad-
ratic and cubic in relative moment,

W (D, 0) =—{P® PloxWe 14 ® 4} 27
—{P®4} 2’3242 {P®V } W15
~22{4®v'}repi6.

The matrices ®SM(p,q), in the same way as the 3N

a7

state |‘I’; 1/2m’>, split into parts with definite parity

@SM(ﬁ’é):ZN:0’1®SM(p’§;N). (18)
Egs. (9)—(17) yield for the terms with positive parity
O(p,;N=0)=y1+iG-Vyy;

OP.GN=0)=iVy3+Gys+pG-qys
+PG-pYe+qo-GyY;+40-pys,
where it is denoted ®(p,g;N)=DS=M=0(p,4;N), and

(19)

>

(20)

v=][ 139 X 5]. The contravariant cyclic components of the
three-vector ®(p,g; N) are ®S=LM (5, G:N).

WF WsSMm(p,g: N=0) with positive parity depends
on functions v ;(p,q,&) with A =1,...,8 where

wa=y'a—(ye+y7+Sy's)/3;

! ' d , 21
ws =y'sty's /2, yg=-y's+y's /2. @D

Other eight functions y, with 1=9,...,16 appear
in the negative parity contributions to the WF. Compo-
nent ‘P;EM’” (p,q; N=1) with zero spin S reads

O(p,g;N=1)=0"-pwy+0-q . (22)
The part of the WF with S=I is

D(p,G;N=D=py; +qya+

tiloxplypztiloxqlyis+ (23)

+i(PGTHV G P)ys+i (GG V+V 69w
Scalar functions y,(p,q,&) with A=1,...,16 are
real, when nuclear forces are time-reversal invariant.
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4. OPERATOR FORM
OF THE WAVE FUNCTION

Relation between TR and OFs for the WF can be
obtained from decomposition

12m) =Y o [d3pdiq ¥ (p,q)

24
x| P.q; SM, 12 m) 3. 4

Spin states with S=1 in the r.h.s. of (24) can be gener-
ated by the operator 5(23)=1/2(5(2)-5(3)) from
one with S=0. Operator ¢(23) was introduced in [1].
With the help of identity [1M),3=0,(23)]00) 53,
Eq. (24) can be cast into the form

|¥; V2 m")=[d3p d3q (B, ) |S=M=0) 53 |1/2m') . (25)
The covariant cyclic components of the vector (23)
are denoted by o, (23).

Operator ‘i’( D->q) acts in the spin space and can be
expressed through the matrices ®5M (p,g;N), viz.,

V(5,3) = Zy-01 (P(5,3:N) + B(5,G;N)-5(23)). (26)

In Eq. 26) ®M (p,g;N) are given by (19), (20), (22),
and (23) where & is substituted by o(1).

Representation (26) can be also derived, using
decomposition of ‘i’( p,qg)in terms of the cartesian

components of the operators (1) and 6(23),
P(5.9) = Y(B.G:D +
+ 3 (U (5.32) 0, () + ¥, (5,G3) 0, (23)) +
+ z,,,,|‘f'nn'(13, q) Oy ) 011‘(23):

Scalar Y(p,q;A=1), vectors ¥,(p,q;A=2,3) and
tensor W, (p,q) are to be build in terms of the relative

@7n

(n’n': x’yﬂz)'

momenta p,q. Operator (27) obtained in this way

agrees with (19), (20), (22), (23), and (26).
Representations of the WF in terms of the POs as

well as with the use of cartesian tensors allow one to re-

late functions y;(p,q,$) and components of the WF

with definite values of total orbital angular momenta.
As seen from Egs. (19) and (20), the S-state 2S), origi-

nates not merely from y;_; and w,_4. As far as in
Eq. (20) a symmetric traceless tensor ¥ .(p,q) is not
singled out, v ;_¢ 7 and y';_g contribute to the S—state,

and through tensor W3 .(p,q) these functions are
related to D-wave 4Dy,. Pseudovector v in (19) and
(20) together with antisymmetric part of (20) determine
P-waves. Component 2P, depends on w,_,, while
4P, state is due to both y;_3 and y';_s.

Parity—odd components ®SM (p,g; N =1) with spin
values S=0 and 1, which contain y; withA =9,10 and
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A=11,...,14, produce negative-parity 2B, and 4P,
states, irreducible pseudotensors
{P®{P®G} }re and {G®{p®g}}rk, which have
rank two and involve three relative momenta, together
with functions w,_;56 (see Eq. (17)) generate P-odd

respectively. The

4Dy, components of the WF.
Egs. (26) and (27) can be written as

V(5.0 = Tpmt, 16 VAP (PO (g

where spin—angular operators u ,1(;:7,3) corresponding

to the scalar functions are separated out. The operators
and functions in (28) are superpositions of ones in
Gerjuoy—Schwinger representation [1,3].

Another way to get an OF for the WF is to transform
decomposition (24) eliminating explicit contribution of

the spin state y, = |S =0,M > »3- Identity

o™ (23) xa = v X0 (29)

where y), = |S =1, M > 23, can be used with this end.
Instead of Eq. (25) one has
|W; 12 mi={dPp d3q X(,4)- 7 21/ m»

where covariant cyclic components of y are y,,, and

X12m = |1/2 m> |- Expression for the operator X(p,4)
generating the 3N—state involves 2 x 2 matrix
f( P,q4;N) , which comes from the term

W M=0M(B.§) xo in (24),
X(7,4) = Zy=01(T(P.G:N)+D(p,G; N)).
Parity—even component of T is given by
L(5.G: N =0)=(3a; +ay +a3)” (a7 5(23)
+ay 3(23)- p p+as 5(23)-G §) v
+il2(&(1)-6(23) v +5(23) -V G(1) w5.

The representation for [(p,§;N =0) is not unique.
Choice of coefficients a;, (i=1,2,3) depends on the

purpose of the transformation. Parity-odd 2P, state
D(p.g;N=1) = (6(1)-6(23) p+6(23) p 6(1)) wy 12
+(0(1)-6(23) g +5(23)-g 5(1) vy /12

originates
ambiguities.

from (22), (23), (26) and contains no

5. COMMON FEATURES OF TENSOR
AND OPERATOR REPRESENTATIONS FOR
DEUTERON AND *He WAVE FUNCTIONS

In calculations of reaction amplitudes, e.g. two-body
photodisintegration of *He or the momentum distribu-



tions of proton—deuteron clusters in *He, both WFs of
2N and 3N nuclei are constructed making use of partial-
wave components. The deuteron WF is known [9-12] to
contain 25+, =38, 1P 3R, 3D, states when nu-
cleon—nucleon potential includes both P—even and P—odd
contributions. In the case of a three-body bound state
partial-wave series involve infinite number of terms [2].

WFs of deuteron and *He in the TR consist of 9 and
16 complex components regardless of whether nuclear
forces conserve parity. The components of WF in the
TR are not independent.

In the center of mass system WF of deuteron with the
total angular momentum J =1 and its projection M'
reads

¢SM 1 (D)=23( s SM

Nucleons in deuteron have number labels 2 and 3.
Component of the WF (30) with =0 can be written
as

¢;J=1,M"), (S=0,). (30)

“M=0,=\ _ » 1
#0 (B = by #CR),
where notation ¢(25*1L ;) = ¢(p; 25*IL,) is used.

Tensor ¢S:11;%( p) is a 3x3 matrix, which can be

(€2))

decomposed similarly to W%, .(5,g) over the POs

with spin s=1 (see Eq. (14)). The coefficients in the
decomposition, that are denoted by ¢,,.(p), (k4=0,1,2),
can be constructed as follows

Ho(5)=V3 48, he(B) =2 b 9CR). 5

$2c (D) =~{P® p}aic $CDy).

Time reversal invariance of NN interaction implies
that the functions ¢(p; 25+1L;) are real.

Part of the deuteron WF with S=1 is

Sane Ay BY ¢ () = A B $(3S)) +

+ip-[AxB1gCR)+ A p B p ¢(3Dy),
#(S)) =4'CS)) - $(Dy) /3,

vectors A, B are introduced for convenience.

(33)

where and auxiliary

Eq. (33) can be written in terms of cartesian compo-

nents @, (p)=Xy=01 $u(P;N) of the tensor
#"13 (P). The P-even part of 4,,,(p)
$uw (P3N =0) =8, $CS)+ Py b $CD) - (34)

is symmetric in indices nn' and real. The P—odd contri-
bution to the WF originating from the 3P wave is anti-

symmetric and imaginary

Suw (BN =1) =i, Py $CR), (S=1), (35)
whereas one coming from 1B wave (31) is real
$:(P) = by $('R), (S=0). (36)

Egs. (31), (32) and (34)—(36) correspond to partial—
wave decompositions [9—12] of WF (30). Compact rep-
resentation (34)—(36) for the deuteron WF prompts us to

search for corresponding constructions in the case of 3N
and 4N systems.
OFs for the deuteron WF can be derived from ex-

pressions (34)—(36). Vector ‘5 > with cyclic components
that coincide with the deuteron state |¢; J=1L,M > is
produced according to

16)=14%p 4(5)|B)|S =M =0) (37)

by operator qg (p) acting in the spin space. Axial- and
polar-vector parts of
. 3 ~
$(5)=5(23) §CS1) + p $('R)
e 203 - 24 .3
+i[6(23)x pl¢(C"R)+6(23)-p p $(°Dy)
spring from parity conserving and violating nucleon—
nucleon interaction.

The operator 5([9) is applied in (37) at the two-
nucleon state |S =M = 0> »3 with zero total spin. In this
respect, Eq. (37) is similar to decomposition (25) in the
case of 3N nuclei. While transformations of (37) under
rotations are provided by the operator gg (p), in the case
of 3N bound state, vector |1/ 2 m’>1 is responsible for
the correct properties of |‘I’; 12 m'>, that is generated

by the scalar operator ‘i’( D,q).
One can get from (31) and (32) other representation

6)=1d%p 2(5)| B), (38)

that involves explicitly only the 2N spin states y with
S=1. Vector in the spin space y(p) is given by

7(P) =7 6CS) +(6(23)p 7+5(23) p-7) ¢('R) 39)
+i[7 % ploCR) + 70 b 4CDy).

Identity (29) has been employed to obtain
contribution of 1A state to (39). Derivation of Egs. (38)

and (39) does not suffer from ambiguities in contrast to
the transformation of the S=0 contribution to the 3N WF

that yields the matrix I['(p,4; N =0). Really, angular
dependence of !P, component (31) is determined by the

vector 137 and application of the identity is

straightforward.

6. SUMMARY AND OUTLOOK
WF of 3N bound state with the total angular mo-
mentum /=12 in TR (1) consists of 16 complex com-

ponents, which are not independent. Decompositions
over POs are used to study structure of the reducible

tensor ‘PH*EM’" (p,q). Under the assumption that nuclear
forces are time reversal invariant, the WF is expressed
q,,p-q)
First eight of them produce parity—even components of
the WF. Ones with 4=9,...,16 appear when nuclear

in terms of 16 real scalar functions l///l(|[7|,
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forces are parity non—conserving. In the obtained repre-
sentation for the WF the contributions with definite
values of total angular orbital momenta are singled out.
The TR for the WF is transformed into the OFs. In
one of the OFs the spin—angular structure of the WF is

generated by operators u  ( [:J,E}), (A=1,...,16), applied
at the spin state |S =M =0)p3[1/2m'"); with zero total

spin S in the pair of identical nucleons. The unit vectors
;:7,2} and the nucleon spin operators are used to build
u,, that are scalars with respect to rotations in space of
the Jacobi momenta. The operators u; and functions y

are superpositions of the respective quantities in the
Gerjuoy—Schwinger representation [1, 3] for the WF.

The WF can be also written as the operator X(p,§)
acting on the state |S:1; M > 23 |1/ 2 m'> 1- Under the rota-

tions operator X transforms like a vector. Non—unique-
ness of this alternative OF is related to existence of sev-
eral ways to get contributions from the term

Wil |S=M=0)p|1/2m"),

to 22+14;=25), component of the WF.

The deuteron state vector, which has total angular
momentum J =1, can be obtained from the NN spin

states |S M >23 with total spin either S=0 or S=1. The

OFs for the deuteron WF are equivalent to partial-wave
decompositions [9—12]. The derived OFs differ from
Rarita—Schwinger representation [13,14].

In papers [1,3] and the present report the isospin
formalism is not employed. TR (1) is convenient [4] to
derive an OF for the WF taking into account isospin
degrees of freedom. Explicitly antisymmetric operator
representation for the WF within the isospin formalism
can be constructed from decomposition

|‘}’>=(1—(1,2)—(1,3))|‘{’(1)>, where an OF is used for

component |‘P(l)>. Transposition of nucleon quantum

numbers in momentum, spin and isospin space is
denoted by (i, ). Being represented in one of the above

discussed OF, vector |‘P(1)> meets the requirement

(2,3)| y) = —| y), which provides

antisymmetrization of |‘P> .

Other approach to construct evidently antisymmetric
WF is widely known [15-20]. The WF can be built in
terms of functions ¥Y[V1(p,4) , (v = symmetric, antisym-
metric, and mixed), spin, and isospin states that belong
to irreducible representations of the symmetric
group S;. The corresponding expressions for parity-
conserving nuclear forces remain unaltered when
effects of parity violation are incorporated, while

functions WI[¥1 are to be modified with the aim to
include P-odd contributions.

Both TR and OFs for the WFs are convenient for
analysis of quantitative features of the matrix elements
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involving the WEF. Influence of parity—violating nuclear
forces on the spin—dependent momentum distributions
of nucleons in polarized 3N nuclei will be discussed in
a forthcoming paper. Within the approaches elaborated,
TR and OFs can be derived for “He WF and related to
the partial-wave decompositions [21] used in solution of
the Faddeev-Yakubovsky equations.
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HAPYIIEHUE TIPOCTPAHCTBEHHOM YETHOCTH
B CBSI3AHHBIX COCTOAHUSAX CUCTEMBI TPEX HYKJIOHOB

B. Komnap, A. Hozza

HccenenyroTcst TEH30PHOE M ONIEPaTOPHOE TPEICTABICHHS U BOJIHOBOW (PYHKIIMU CBSI3AHHOTO COCTOSIHHS TPEX
HYKJIOHOB. [Ipeamonaraercsi, 4To MPOCTPAHCTBEHHAS YETHOCTh HE COXPAHICTCS BO B3aUMOJICHCTBUN MEXY HYKIIO-
Hamu. BosHosie dyHkumn siaep *He i “H BoipakeHs! uepes 16 ckansapHbX QYHKIMH, KOTOPbIE 3aBUCAT OT BEINYHH
OTHOCHUTENIbHBIX MOMEHTOB M yriia Mexay HuUMU. DYHKIUH BEIIECTBEHHBIC, KOIJA SIIEPHBIC CUJIbI SIBISIFOTCS
WHBAPHAaHTHBIMU OTHOCHUTENBHO OOpailieHus BpeMeHH. [IpoBe/ieHo cpaBHEHUE ONepaTOpHBIX (OPM ISl BOJIHOBBIX
¢dbyskuumii geritpona u 3N-suep.

MOPYHIEHHS ITPOCTOPOBOI TAPHOCTI
B 3B’SI3AHUX CTAHAX CUCTEMH TPbOX HYKJIOHIB

B. Komnap, A. Hozza

JlocHiKyIOTECSl TEH30pHE Ta OIEpaTOpHE MPEACTaBICHHS UII XBIJIBOBOI (PYHKIN 3B’S3aHOTO CTaHY TPHOX
HYKJIOHIB. BBakaeThcs, 1O MPOCTOpOBA MapHICTh HE 30epiraeTbesi MpU B3aeMOAll MK HYKJIOHaMH. XBHJIbOBI
dynkuii sgep “He i “H BupakaroThes uepes 16 ckanspHMX (YHKIH, sKi 3aIeXaTh Bil BEIMYHH BiIHOCHHX
MOMEHTIB Ta KyTa MmoMik HuMH. OYHKIIT € MiACHIMH, KOJH SASpHI CIJIM iHBapiaHTHI BITHOCHO OOCpHEHHS Hacy.
[IpoBeneHo nmopiBHIHHS ornepaTopHuX (HOpM sl XBIILOBUX (YHKIIIH AeiiTpoHa Ta 3N-szep.
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