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Tensor and operator representations for wave function (WF) of three–nucleon bound states are discussed. It is 

supposed that space parity is not conserved in interaction between nucleons. The WFs of 3He and 3H are expressed 
in terms of 16 scalar functions, which depend on the magnitudes of the relative momenta and the angle between 
them. These functions are real in the case when nuclear forces do not violate time reversal symmetry. Characteristic 
features appropriate to WFs of deuteron and 3N nuclei in operator form (OF) are compared. 
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1. INTRODUCTION 
Properties of the three– and four–nucleon bound 

states were investigated [1] by E. Gerjuoy and 
J. Schwinger under the assumption that the nuclear 
forces are invariant with respect to the space inversion. 
Three–nucleon system of even parity and with the total 
angular momentum  was considered in [1]. 2/1=I

Tritium WF can be obtained [1] from the 3N spin 
state that has zero spin in two–nucleon subsystem with 
the help of a set of spin–angular operators  
multiplied by scalar functions 
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operators  are constructed from unit vectors  
directed along the Jacobi coordinates  and Pauli 
matrices of nucleons. All three-nucleon states 

 and  with total orbital 

momentum  and total spin  that 

may appear in 3N bound state with  are 
generated by operators [1]. 
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Relationship between the OF and the partial–wave 
decompositions [2] of the WF was investigated in [3]. 
Eight scalar functions, needed to build up the WF, were 
calculated for modern realistic models of nuclear forces. 
Results of Ref. [3] can be used to compute WFs of 3He 
and 3H nuclei in momentum space1 . 

An OF for the WF was also derived in [4] 
transforming WF [5] in tensor representation (TR). 
Different sets of the operators are employed in [1,3] 
and [4]. Operators and corresponding scalar 
functions [4] are linear combinations of ones defined 
in [3]. WF in the TR [5] was used in [4] to calculate and 
analyze structure of spin–dependent momentum 
distributions of nucleons and proton–deuteron clusters 
in 3N nuclei. 

Parity–conserving nuclear forces and correspond-
ingly WFs of 3He and 3H nuclei with positive parity 
were treated in Refs. [1,3-5]. Aim of this report is to 

incorporate into TR and OF for the WF contributions 
due to parity violating interaction between nucleons. 

                                                           
1 The functions can be downloaded from 

http://www.phy.ohiou.edu/~elster/h3wave/index.html 

2. TENSOR FORM OF THE 3N  
BOUND – STATE WAVE FUNCTION 

WF of the three-nucleon bound states m'I;Ψ  with 
the total angular momentum  and its projection 

 in TR reads [5] 
2/1=I
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Tensor (1) has 16 complex components.  
Eq. (1) is written in the center of mass system of the 

nucleus. The Jacobi momenta are 
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where  is the momentum of nucleon with number 
 The total spin  of the nucleons 2 and 3 

takes on values 0 and 1. The spin states are defined as 
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where  is Clebsch–Gordan coefficient [6]. Vector α
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 describes nucleon i with the projection of spin 
 
The isospin formalism is not employed in the 

present paper. The nucleon labeled by 1 is chosen to be 
neutron (proton) for 3  nucleus. In turn, 
nucleons 2 and 3 are protons (neutrons). 

)( H He 3

WF (1) transforms under the permutation (2,3) of 
identical nucleons 2 and 3 according to 
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As far as we assume that interaction between nucle-
ons does not conserve space parity, nuclear states are 
superpositions of terms with opposite parity:  

∑ Ψ=Ψ = 1,0 ,;2/1;2/1; N Nm'm'  

so ,;2/1;)1(;2/1; Nm'Nm'P N Ψ−=Ψ  where P is the 
space inversion operator. The components 
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of WF (1), that have definite parity (  obey ,)1 N−
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A consequence of (3) and (5) is 
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Eqs. (3), (5), (6) contain the WF values for the same 

quantum numbers  at different points in the 
space of Jacobi momenta. These relations can be used to 
control numerical calculations of the WF in TR (1). 
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In the case of time reversal invariant nuclear forces 
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Eqs. (5) and (7) impose constraints  
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Since in both sides of Eq. (8) the WF values are taken at 
the same point of 

G
–space, the components of ten-

sor (4) with  can be obtained from ones having 
 However, the total number of independent 

functions, needed to built tensor (1), when time reversal 
invariance holds, and space inversion symmetry is 
violated, is not reduced by Eq. (8). In the next section 
WF (1) will be constructed using minimal amount of 
real scalar functions. 

qp
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3. DECOMPOSITION OF THE WAVE 
FUNCTION OVER POLARIZATION 

OPERATORS 

WF (1) is the set of four 2  matrices  

defined as 
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The matrices can be decomposed over the complete 
system of polarization operators (POs)  for spin 
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Properties of the POs are discussed in [6-8]. In the 
present report we follow conventions of Ref. [6]. The 
contravariant POs are given by 

 The matrices of the 
covariant POs are  
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Jacobi momenta  The component of the tensor 
with  is a scalar function = KS
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where, similarly to Eqs. (10)–(12), one has 
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Term  in (14) receives contributions from 
irreducible tensor products of rank two, which are quad-
ratic and cubic in relative moment, 
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The matrices  in the same way as the 3N 
state 
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Eqs. (9)–(17) yield for the terms with positive parity 
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where it is denoted Φ  and 

 The contravariant cyclic components of the 

three-vector  are Φ  
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Other eight functions λψ  with  appear 
in the negative parity contributions to the WF. Compo-
nent  with zero spin S reads 
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Scalar functions ),,( ξψλ qp  with  are 
real, when nuclear forces are time–reversal invariant. 

16,,1…=λ
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4. OPERATOR FORM  
OF THE WAVE FUNCTION 

Relation between TR and OFs for the WF can be 
obtained from decomposition 
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In Eq. (26) Φ  are given by (19), (20), (22), 
and (23) where  is substituted by . 
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decomposition of in terms of the cartesian 
components of the operators  and  
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Scalar  vectors  and 
tensor  are to be build in terms of the relative 
momenta  Operator (27) obtained in this way 
agrees with (19), (20), (22), (23), and (26). 
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Eqs. (26) and (27) can be written as  

 (28) 

where spin–angular operators u  corresponding 
to the scalar functions are separated out. The operators 
and functions in (28) are superpositions of ones in 
Gerjuoy–Schwinger representation [1,3]. 

Another way to get an OF for the WF is to transform 
decomposition (24) eliminating explicit contribution of 
the spin state  Identity  

 (29) 

where  can be used with this end. 
Instead of Eq. (25) one has 
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The representation for  is not unique. 
Choice of coefficients   depends on the 

purpose of the transformation. Parity-odd  state  
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originates from (22), (23), (26) and contains no 
ambiguities. 

5. COMMON FEATURES OF TENSOR  
AND OPERATOR REPRESENTATIONS FOR 

DEUTERON AND 3He WAVE FUNCTIONS  
In calculations of reaction amplitudes, e.g. two-body 

photodisintegration of 3He or the momentum distribu-
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tions of proton–deuteron clusters in 3He, both WFs of 
2N and 3N nuclei are constructed making use of partial-
wave components. The deuteron WF is known [9-12] to 
contain , 3  states when nu-
cleon–nucleon potential includes both P–even and P–odd 
contributions. In the case of a three-body bound state 
partial-wave series involve infinite number of terms [2]. 
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WFs of deuteron and 3He in the TR consist of 9 and 
16 complex components regardless of whether nuclear 
forces conserve parity. The components of WF in the 
TR are not independent. 

In the center of mass system WF of deuteron with the 
total angular momentum  and its projection  
reads 
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Time reversal invariance of NN interaction implies 
that the functions  are real. );( 12
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is symmetric in indices  and real. The P–odd contri-
bution to the WF originating from the  wave is anti-
symmetric and imaginary 
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Eqs. (31), (32) and (34)–(36) correspond to partial–
wave decompositions [9–12] of WF (30). Compact rep-
resentation (34)–(36) for the deuteron WF prompts us to 

search for corresponding constructions in the case of 3N 
and 4N systems. 

OFs for the deuteron WF can be derived from ex-
pressions (34)–(36). Vector 
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spring from parity conserving and violating nucleon–
nucleon interaction.  G

The operator  is applied in (37) at the two-
nucleon state 
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respect, Eq. (37) is similar to decomposition (25) in the 
case of 3N nuclei. While transformations of (37) under 
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Identity (29) has been employed to obtain 
contribution of 1  state to (39). Derivation of Eqs. (38) 
and (39) does not suffer from ambiguities in contrast to 
the transformation of the S=0 contribution to the 3N WF 
that yields the matrix 
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 Really, angular 

dependence of 1  component (31) is determined by the 

vector  and application of the identity is 
straightforward. 
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6. SUMMARY AND OUTLOOK 
WF of 3N bound state with the total angular mo-

mentum  in TR (1) consists of 16 complex com-
ponents, which are not independent. Decompositions 
over POs are used to study structure of the reducible 
tensor  Under the assumption that nuclear 
forces are time reversal invariant, the WF is expressed 
in terms of 16 real scalar functions 
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First eight of them produce parity–even components of 
the WF. Ones with  appear when nuclear 16,,9…=λ
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forces are parity non–conserving. In the obtained repre-
sentation for the WF the contributions with definite 
values of total angular orbital momenta are singled out. 

The TR for the WF is transformed into the OFs. In 
one of the OFs the spin–angular structure of the WF is 
generated by operators   applied 
at the spin state 
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1'2 mS = 23 10M =  with zero total 
spin S in the pair of identical nucleons. The unit vectors 

 and the nucleon spin operators are used to build 
 that are scalars with respect to rotations in space of 

the Jacobi momenta. The operators  and functions 

qp ˆ,ˆ GG

,λu

λu λψ  
are superpositions of the respective quantities in the 
Gerjuoy–Schwinger representation [1, 3] for the WF. 

The WF can be also written as the operator  
acting on the state 

),(ˆ qp
GGG

Χ

.'21;1 123 mMS=  Under the rota-

tions operator  transforms like a vector. Non–unique-
ness of this alternative OF is related to existence of sev-
eral ways to get contributions from the term 

Χ̂
G

1231 '210 mMS ===λψ  

to  component of the WF. 2/1
212 SΛI

Σ =+

The deuteron state vector, which has total angular 
momentum  can be obtained from the NN spin 
states 

,1=J

23MS  with total spin either  or S  The 
OFs for the deuteron WF are equivalent to partial–wave 
decompositions [9–12]. The derived OFs differ from 
Rarita–Schwinger representation [13,14]. 

0=S .1=

In papers [1,3]  and the present report the isospin 
formalism is not employed. TR (1) is convenient [4] to 
derive an OF for the WF taking into account isospin 
degrees of freedom. Explicitly antisymmetric operator 
representation for the WF within the isospin formalism 
can be constructed from decomposition 

,))3,1()2,1(1( )1(Ψ−−=Ψ  where an OF is used for 

component .)1(Ψ

).,( ji

 Transposition of nucleon quantum 

numbers in momentum, spin and isospin space is 
denoted by  Being represented in one of the above 

discussed OF, vector )1(Ψ  meets the requirement 

,)3,2( )1(Ψ )1(Ψ−=  which provides 

antisymmetrization of Ψ . 
Other approach to construct evidently antisymmetric 

WF is widely known [15–20]. The WF can be built in 
terms of functions , (  symmetric, antisym-
metric, and mixed), spin, and isospin states that belong 
to irreducible representations of the symmetric 
group S

),(][ qp
GGνΨ =ν

3. The corresponding expressions for parity-
conserving nuclear forces remain unaltered when 
effects of parity violation are incorporated, while 
functions  are to be modified with the aim to 
include P-odd contributions. 

][νΨ

Both TR and OFs for the WFs are convenient for 
analysis of quantitative features of the matrix elements 

involving the WF. Influence of parity–violating nuclear 
forces on the spin–dependent momentum distributions 
of nucleons in polarized 3N nuclei will be discussed in 
a forthcoming paper. Within the approaches elaborated, 
TR and OFs can be derived for 4He WF and related to 
the partial-wave decompositions [21] used in solution of 
the Faddeev-Yakubovsky equations. 
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НАРУШЕНИЕ ПРОСТРАНСТВЕННОЙ ЧЕТНОСТИ  
В СВЯЗАННЫХ СОСТОЯНИЯХ СИСТЕМЫ ТРЕХ НУКЛОНОВ 

В. Котляр, A. Ногга 

Исследуются тензорное и операторное представления для волновой функции связанного состояния трех 
нуклонов. Предполагается, что пространственная четность не сохраняется во взаимодействии между нукло-
нами. Волновые функции ядер 3He и 3H выражены через 16 скалярных функций, которые зависят от величин 
относительных моментов и угла между ними. Функции вещественныe, когда ядерные силы являются 
инвариантными относительно обращения времени. Проведено сравнение операторных форм для волновых 
функций дейтрона и 3N-ядер. 

 
 

ПОРУШЕННЯ ПРОСТОРОВОЇ ПАРНОСТІ 
В ЗВ’ЯЗАНИХ СТАНАХ СИСТЕМИ ТРЬОХ НУКЛОНІВ 

В. Котляр, A. Ногга 

Досліджуються тензорне та операторне представлення для хвильової функції зв’язаного стану трьох 
нуклонів. Вважається, що просторова парність не зберігається при взаємодії між нуклонами. Хвильові 
функції ядер 3He і 3H виражаються через 16 скалярних функцій, які залежать від величин відносних 
моментів та кута поміж ними. Функції є дійсними, коли ядерні сили інваріантні відносно обернення часу. 
Проведено порівняння операторних форм для хвильових функцій дейтрона та 3N-ядер. 
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