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The asymptotic and numerical analysis of the nonlinear hypersonic wave propagation is fulfilled. Some peculi-

arities of the linear propagation of a periodic signal, such as the formation of a periodic shock wave, have been 
found. Applications to coherent bremsstrahlung of fast electrons are pointed out.  
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1. INTRODUCTION 
The studying of possibilities to increase effective 

occupation numbers by non-equilibrium phonons 
arouses great interest. In quantum statistical physics [1] 
creation and annihilation operators are in concordance 
with two statistic objects: phonons described by the 
distribution function satisfying kinetic equation and 
coherent states with occupation numbers going to infin-
ity along with the volume, so that their ratio remains 
finite (the thermo-dynamic limit transition in statistical 
description). It is natural to expect that sound waves 
with defined wave vector, being solutions of the elastic-
ity equations and representing due to their microscopic 
nature a statistic coherent state of infinite number of 
bosons with a certain momentum (Bose-condensate), 
will take an active part in the electron-phonon interac-
tion in coherent bremsstrahlung (CBS) processes. Ac-
cording to these considerations it could be interesting to 
investigate the hypersonic (HS) wave (microwave ultra-
sonic waves in English literature) excitation in crystals, 
paying a special attention to the problem of HS wave 
propagation under normal conditions when both dissi-
pation and nonlinearity effects play an essential role.  

Microwave ultrasonics is widely used in physics, in 
particular in solid-state physics [2], mechanics, and 
medicine [3]. The aim of the proposed analysis of HS 
wave generation and propagation is to discover a 
mechanism allowing to obtain quite intensive HS oscil-
lations at target thickness usually used in the CBS 
(  thick) generation.  cm10...10 12 −−

At a temperature higher than 15 K HS waves [2] un-
dergo strong damping and their propagation length is 

small and equals cm at frequency Hz. As it 
is shown below, some of existing damping mechanisms 
in covalent crystals (silicon, germanium, diamond) do 
not prevent excitation and propagation of large intensity 
HS waves. 

-310 ≈ 1110

The large intensity hinders propagation of HS waves 
on macroscopic distances by virtue of nonlinear effects 
in generation which strongly damp higher harmonics. 
However, due to reverse influx of energy from the 
higher harmonics generated by nonlinear interaction 
and formation of nonlinear dissipative structures of pe-
riodic shock waves, the damping lengths of basic and 

higher harmonics increase up to the damping length of 
the first harmonic in the linear theory. 

As was assumed [10], large intensity of hypersonic 
oscillations will be needed to obtain an appreciable ef-
fect on the CBS from fast electrons. 

2. CORRELATIONS AND THE PROBLEM  
The theory of thermo-elasticity gives the following 

equation for longitudinal displacement  [2]  ),( txu

( ) ),("' " "    
2 txauuNuusu xxxxxxx =−+− α ,  (1) 

where ( )∫ ∂∂Γ=
t xtxQdttxa 00 )',('),( ρ  is thermo-

acoustic force divided by density , 0ρ CKγ=Γ  is 
Grüneizen parameter, γ  is the coefficient of linear ex-
pansion, K  is the elasticity modulus, C  is the heat 
capacity.  is the loss of energy of concentrated 
stream of energy.  is the non-dimensional coefficient 
of non-linearity [3], 

),( txQ
N

s  is the sound velocity. 
22 ωα sA=  (  for a silicon crystal) is the 

dissipative parameter;  is the coefficient of spa-
tial damping proportional to square power of the sound 
frequency 
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ω . A1  is the length of linear damping of 
the sound.  

2.1 MECHANISMS OF DAMPING 
For the Akhiezer damping connected with the re-

laxation of lattice deformation the coefficient of spatial 
damping equals [2,4] 
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where  for  and TT =Φ )( DT Θ> TT D
2)( Θ=Φ  for 

, DT Θ< T  and  are the lattice and Debye tem-
peratures, respectively, 

DΘ
κ  is the coefficient of heat con-

ductivity. Coefficients of heat conductivity due to 
mechanisms of spatial damping and internal frictions 
(viscosity damping of longitudinal sound) are defined 
by formulas [2]: 
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respectively. Here  and  are viscosity coeffi-
cients. 

1'η 2'η

In the temperature interval  the damp-
ing is great and damping length is equal to 

cm at Hz [2]. If  the 
main damping mechanism is connected with the genera-
tion of point defects [5] and is not proportional to the 
sound frequency squared. For crystals of silicon, ger-
manium, diamond, etc. the mechanism of Akhiezer 
damping is the strongest at normal conditions and in the 
temperature interval   

K 250...20≈

310/1 −=A 1010∝ω KT  600>

. 600...300 K≈

2.2. BOUNDARY PROBLEM (  ) ,0≥x 0≥t

We shall consider the sound excitation in crystals by 
concentrated energy flux (for example, by intense laser 
or ion beam). Thin metal film with the width  is sup-
posed to exist at the boundary  and, for simplicity 
of solution, its sound wave resistance equals the crystal 
one. The duration  of the pulse incident on film 
boundary is much greater than the time necessary for 
sound to pass through film-metal energy interaction 
region, 

d
0=x

bT

sdTb >> ; then we have  

[6].  is the full input energy per cm . We shall con-
sider constantly the solution for periodic temporal de-
pendence, 
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The boundary condition becomes 
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where ( )2
00  sGEu ρ=  is an effective displacement 

under the action of energy E . The boundary problem 
for   is solved by asymptotic method under 
the assumption of smallness of relative deformation, 

,0≥x 0≥t

=∝ xx εε =∂∂ xu   ( ) Θ∂∂−   1 Us , 1<<ε , or of the 
ratio of the displacement velocity to the sound velocity 
[7]. Expansion has been supposed 

 and only the main term is 
taken into account. Here 

=),( txu ( ) )(, εΟ+Θ XU
xX  ε=  is the "slow" coordi-

nate and sxt −=Θ  is the time variable in the frame of 
reference moving with the velocity of the sound wave in 
the linear theory. From Eq. (1) we get the Burgers equa-
tion for : ΘU

( ) ΘΘΘΘΘΘΘ =− UsUUsNU X )( 2 2
 α . 

Now one can introduce new non-dimensional variables 
AX  =ξ , t ωτ = , =Θ=  ωϑ ητ − , . The 

known substitution [8] 
σξη /=

=Θ∂∂   U ≡ΘΘ ),( XU  
=≡ ),( ξϑV ( )bTu00 )/1 ( ρ ( )),()/( ξϑφϑφ ∂∂  gives 

equations of the "thermal conductivity" type in new 
variables, with inversion of time and spatial variables, 
and boundary condition from Eq. (2) for 

 takes the form: )/()( ωττ FTf b=
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where  is the dimensionless 

parameter of the intensity; . 
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2.3. SOLUTION. GENERAL EXPRESSIONS 
Solution of the problem (3) with phase integral is 
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From the normalizing condition  for 

 and definition of  it follows 
that the integral  
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and parameter ≈bT  ωρ ) 2(00 su α  are large. An as-
ymptotic calculation of integral (4) by standard Laplace 
method [9] includes the contribution of the vicinity 
points of the exponent maxima :  ),( ξϑϑs
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The exponent Γ  has the expansion 
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boundary signal in the form 
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ended, asymptotic result is 
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The computer simulation of the displacement veloc-
ity calculation by the means independent from the as-
ymptotic method of the calculation used for integral (4) 
was fulfilled. The computer calculations allow investi-
gating of the displacement velocity at values of variable 

0>ξ  up to  for all char03,3 πξ≈ ϑ , both negative and 
positive. Here =charξ ( ))('max  21 sf ϑρ . 

3. NONLINEAR HS WAVES. STRUCTURES 
If to write the exponential term in the form  

) =Γ ),(e s ξϑh Δ≡Δ exp),(exp ξϑ , 
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where , we have expression for the 
displacement velocity in the form of shock wave 

=Δ ),(ln ξϑhs +Γ

( )( )bTuV 2),( 00=ξϑ )( sf ϑ ( )),( tg1 ξϑΔ− .  (7) 
At small ξ  and large and negative  the dis-
placement velocity equals  

),( ξϑΔ

( )( ) )( sfbTuV 2),( 00=ξϑ ϑ .  (8) 

For periodic boundary signal the displacement velocity 
has the form of nonlinear HS wave at frequencies 

. In the interval of distances , 
by iteration from the formula (5) it follows 

. These formulas allow to find out 
the effect of steepening of the wave and to investigate 
its profile. The steepening of the wave is demonstrated 
by numerical calculations and is presented in Fig. 1. 

9102πω ≥ char0 ξξ <<
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Fig. 1. The velocity of displacement depending on 

the dimensionless spatial coordinate λπη X 2= , at 
10=ρ , 0010.=σ  (these parameters may correspond 

to frequencies Hz, 1110 πτ 6000= ). It is possible to see 
the steepening of the wave profile 

3.1. ENRICHMENT BY HIGH HARMONICS 
In the above mentioned interval the wave enrichment 

by means of higher harmonics happens. For harmonic 
boundary signal a forward front of the wave in its period 
is steepening. The back front becomes less steep than in 
the boundary signal . The computer simulation of 
these processes is reflected in Fig. 1 and 2. 

)(tF

 

 
Fig. 2. Spectral decomposition of periodic sawtooth 

shock wave without zero harmonic (parameters are the 
same of previous figure). Both from this diagram, pre-
vious figure and analytical investigations it may be seen 
the wave enrichment by higher harmonics 

From the solution (8) at , using non-obvious 
expression (5) for a point of maximum, it is possible to 
make conclusion: if the boundary velocity is positive, 

, with the propagation deeper into 
crystal the forward front of the wave undergoes steep-
ening (

0>N

)()( 000 tFutu = 0>

0>dtdF ) and the back one – tension 
( 0<dtdF ). Actually, if maximum of  is achieved 
at point , for given  the maximum value of  is 

achieved at point 

)(tF

mt X ΘU

−=Θ mm t 2
00)( sNutXf m , i.e. the 

velocity reaches its maximum value at point X  at ear-
lier "moment of time" from the start of the signal, than 
in the linear theory.  

3.2. SAWTOOTH PERIODIC SHOCK WAVE 

At values πξϑϑ 2) ;( >>s  there are two maximum 
points in the integral (4). The displacement velocity 
takes the form  
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or another form is 

( ) ( ) AXtXUV ξωξϑ ==ΘΘ Θ=  ; ,,  

( ))( bTu 200= ( )( )ΔΓ−++  th)( 2121 ffff , (9) 

where )( jj ff ϑ= , ),,( ξϑϑ jj Γ=Γ , . The 

exponent maximum points; 

2 ,1=j
=jϑ  ),( ξϑϑ j , are found 

from Eq. (5) and =ΔΓ ≡−Γ−Γ ''
1

''
221 ln)2/1( γγ  

( )ξϑ,ΔΓ≡ . Solution (9) has the structure of the 
sawtooth shock wave of the displacement velocity, 
shown in fig. 3. 

 

Fig. 3. Sawtooth shock waves with a sharp steepness 
depending on intensity of shock wave being propagated 
along diagonal, Tt // 2=πτ  and η π λ// X2=  
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4. MAIN RESULTS. DISCUSSION 
The nonlinear propagation of highly intensive HS 

waves under dissipative conditions applicable for cova-
lent crystals (silicon, germanium, diamond) was investi-
gated to find the possibilities and conditions for propaga-
tion of HS waves in these crystals. Formulated nonlinear 
elasticity equations with dissipation are reduced to 
Buergers nonlinear equation with spatial and time inver-
sion of variables expressed in the coordinate system mov-
ing with the sound velocity of the linear theory. 

The nonlinear wave of large amplitude undergoes 
temporal evolution in space at some distance 

AX  1char ρ= . Forward front of a nonlinear wave with 
a steep profile separates the area which the wave has 
not yet reached from the area of a nonlinear solution. 
The analysis of the obtained solution shows that with 
the increase of the distance  from the boundary the 
front line of the wave turns steeper, while trailing one 
becomes flatter.  

X

The obtained results allow to state, that at =ω  

Hz, cm, sec the penetra-
tion depth of the nonlinear HS wave achieves several 
tenth of centimeter. 

10102π= 8
00 10−≤u 610−=bT

The asymptotic and the numerical analysis of 
quadratures have shown the following peculiarities of 
the nonlinear propagation of periodic signal. The wave 
was enriched with high harmonics. On the distances a 
little exceeding  the signal is propagated as 
periodic sawtooth shock wave with weak damping of 
oscillations. 

char. Xπ13

At extra large times sXt char3π>>  the spatial be-
havior qualitatively varies for different boundary im-
pulses. For example, in the solution stated in [8] for 
periodical in space sources the nonlinear wave damps 
with time. Its amplitude tends to zero by exponential 
law. 

The steepness of a profile of this front does not de-
pend on the shape of the boundary impulse; also it is 
defined by the intensity of nonlinear shock wave. Spec-
tral expansion of the shock wave front at the period 
interval is enriched with higher harmonics for 10=ρ  ─ 
up to the tenth and higher harmonics.  

Thus, investigation of nonlinear propagation of 
waves in elastic bodies with dissipation shows that the 
spatial-temporal structure of nonlinear waves is similar 
to the structure of a shock wave. When time average of 
the boundary value is not equal to zero, shock wave will 
propagate deep at such distances at which nonlinear 
signal will be spread during the time of switching of the 
boundary signal period (shock waves propagates until 
boundary signal is switched on). 

In accordance with these results the thermo-elastic 
mechanism of wave excitation is of the essential inter-
est. 

5. APPLICATIONS AND DEVELOPMENT 
Earlier the investigations of this kind were made in 

order to study the beam interaction with solids and mag-

magneto-sonic wave penetration in conducting media 
[7]. In paper [7] nonlinear sound modulated magnetic 
field and generated magneto-acoustic waves which 
penetrated in conducting medium.  

Within STCU project № 285 it was made an attempt 
to analyze the optimal conditions in order to increase 
the CBS emission of fast electrons. This attempt be-
longs to V.F. Boldyshev and Yu.P. Peresunko [10], Fig. 
4. For Si crystal the displacement amplitude of about 

cm should be achieved at frequency 
 Hz. 
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Fig. 4. Spectral radiation intensity of the electron 

with energy 1 GeV, moving in the Si crystal along the 
axis (0 0 1) in the field of transverse HS wave (HSW) 
with the frequency s ; HSW propagates in 
the same direction. Solid curve (1) corresponds to the 
HSW amplitude , dashed line (2) − 

, dotted line (3) − , chain line 

(4) − to the amorphous level.  is the 
crystal lattice parameter 

10102πω = 1−

aas 05.0=
aas 025.0= aas 10.0=

cm. 810435 −⋅=a

 
Fig. 4 displays (with shown parameters) the spectral 

intensity ωddW /  of the electron radiation calculated 
with the obtained formulae. Also diagrams are given 
here for various values of the HS wave amplitude. It is 
evident from Fig. 4 that the spectral radiation intensity 
has distinct maxima at the energies of , MeV 98.18⋅l

,...2,1=l . It is interesting to consider how ωddW /  
depends on amplitude of the hypersonic wave . The 
obtained results make it possible to find an optimal 
value of  for the effect under consideration. This 

value equals  (remind for comparison that 
the mean-square thermal displacement for Si at room 
temperature is equal to ). We can see from the 
given picture that the CBS contribution exceeds the 
amorphous layer 30-35 times in the presence of the HS 
wave with the optimal amplitude at the region of the 
first maximum. It should be noted that analogous values 
for radiation intensity can be found for the case of the 
HS wave with the longitudinal polarization 

sa

sa

∝eff
sa a 05.0

a 014.0

The analysis of influences on radiation of fast elec-
trons in crystals and the analysis of nonlinear HS waves 
with actual structure as well as actual physical require-
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ments of HS wave excitation of various intensities should 
be a subject of the further investigations (see, e.g. [11]). 
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НЕЛИНЕЙНАЯ ЭВОЛЮЦИЯ ГИПЕРЗВУКОВЫХ ВОЛН С АХИЕЗЕРОВСКИМ ЗАТУХАНИЕМ  

И ИХ РОЛЬ В КОГЕРЕНТНОМ ТОРМОЗНОМ ИЗЛУЧЕНИИ В КРИСТАЛЛАХ 

А.А. Водяницкий  

Представлены асимптотический и численный анализы распространения нелинейных гиперзвуковых 
волн. Исследовано формирование периодических нелинейной и ударной волн для периодического гранич-
ного сигнала. Указаны приложения к когерентному тормозному излучению быстрых электронов. 

 
 
НЕЛІНІЙНА ЕВОЛЮЦІЯ ГІПЕРЗВУКОВИХ ХВИЛЬ З АХІЕЗЕРОВСЬКИМ ЗАГАСАННЯМ  
ТА ЇХ РОЛЬ В КОГЕРЕНТНОМУ ГАЛЬМІВНОМУ ВИПРОМІНЮВАННІ В КРИСТАЛАХ 

О.А. Водяницький  

Представлені асимптотичний і чисельний аналізи розповсюдження нелінійних гіперзвукових хвиль. До-
сліджено формування періодичних нелінійної та ударної хвиль для періодичного граничного сигналу. Вка-
зано на застосування до когерентного гальмівного випромінювання швидких електронів. 
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