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The method of unitary clothing transformations is applied in the model involving nucleon and neutral pion fields
interacting via the regularized pseudoscalar Yukawa-type coupling. In this approach the mass counterterms are
cancelled (at least, partly) by commutators of the generators of clothing transformations and the field interaction
operator forming the pion and nucleon mass shifts expressed through the corresponding three-dimensional integrals
whose integrands depend on certain covariant combinations of the relevant three-momenta. The property provides
the momentum independence of mass renormalization. The conditions imposed upon the cutoff vertex function are

specified.
PACS: 21.45.+v; 24.10. Jv; 11.80.-m

1. FIELD MODEL WITH REGULARIZED
INTERACTION
Our departure point is the Hamiltonian
H(ay)=H,(a,)+H,(a)
=Hp () + M, (a)+V () +V,, (), M

where o, — set of all creation and destruction operators

of the “bare” particles with physical masses and coup-
ing constants [1]. In case of a spinor (fermion) field and
a neutral pseudoscalar (meson) field one has

H.(a,)= J.a’ka)kaT (k)a(k)

+[dpE, > [ b' (p,7)b(p,r)+d (p,r)d (p.r)], (@)
with the operators for mesons a(k), nucleons b(p,r),
antinucleons d(p,r) and their adjoint counterparts. The
quantities k, p and r are the particle momenta and the
index. Relativistic

fermion polarization physical

: 2 2
energies are expressed as E, =.p +m and

@, =k’ +4° , where m and u play role of physical
Mren (ao ) = Mren, mes (aO)
+M.,,, (@) are usual mass counterterms for mesons
shifts

and dm=my,—m where m, and pu,

(renormalized)  masses.
and fermions,
S’ = py — u°
play role of trial (unrenormalized) masses. The one-

particle operators in (2) satisfy the usual commutation
relations

[a(k), a' (k)| =60 -K);
{b(p.r).b" (0'.)} ={d (p.r).d" (0'.)} = 6,.00-P)
{F (p.r). F,'(0')} = 6,6, .00-p);
Fi(p.r)=(b"(p.r), d(-p.r)). 3)

containing respective mass

In our non-local extension of the Yukawa-type
coupling the interaction operator is

V(ay) = [dkV* a(k)+ H.e.;
ve=fapdp Y F(p.r') V(0. ipor) Fy (por):

i
Vzkf (p’,i";Par) = (27;)3/2 Jza):nﬂ 5(P+k—P/)
Uit (pr) 81, (P-K) 75U, (Por). @

with physical vertex functions g, (p',p,k) (real

Lorentz-scalar cutoff form-factors in each vertex). Dirac
spinors u# and v satisfy the conventional equations and
form the matrix

u(p,r) 0
Ulp,r)= . 5
) (0 V(-w)J ®
The vertex counterterm V,, (a,)=V,(e,)-V(ea,) is
determined by the formulae (4) but with g, , substituted
by dg,, =g,—g,, where g, - bare coupling constant.
The CPT invariance of the total Hamiltonian leads to
g, (p.pk)=g,,(p.p.k),
g, (p.pk)=g(p.p, k), i#J, (6)

. (P pk) =g, (p.p k).

2. CLOTHED PARTICLE
REPRESENTATION

By definition, the one-bare-particle states |aO*QO>
are the eigenstates of the free part of the Hamiltonian
H, (a0)|aOTQO> =E, |aOTQO> . However, the same one-
particle states are not the eigenstates of the total
Hamiltonian ~ H (a0)|aOTQO> +E |aOTQO> . Whether
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there exists a new set of creation/destruction operators
@, in terms of which H, (a,) aCTQ> =E|aCTQ> and

H(a.)

[2] assumed that such set of operators «_,

acTQ> =E |acTQ> ? Greenberg and Schweber

called

“clothed”, existed and was connected with the initial set
of operators ¢, via the unitary transformation which

kept S -operator intact

@y = W(ac)acW%(

w(a,)=e""), R(a,)=-R"(a,). 7

Applying this transformation to the
Hamiltonian operator, we find

H(ay)=H, (a.)=H,(a,)+H,(a.)
H (a,)=V(a)+M,, (a)+V,

a), Wt =w'w =1,

total

“k
iki[ )M, 4V, ] (8)
k=

where [R,V] V [R [R [R,V].. H with & -brackets.

Generator R has to be chosen in such a way that
H,(a,) does not contain terms, called “bad”, which

prevent the one-particle states to be the eigenstates of
the total Hamiltonian (e.g., M,, and V), namely

H,(a,) >:O.

3. BAD TERMS REMOVAL AND MASS
RENORMALIZATION

It is convenient to separate several types of

ren

operators in H, (e, ). “Transition” operators, 0,(’"; and

Ot(,';) of g"-order, consist of more than three

creation/destruction operators of any species. “ g ” and

“b” mark “good” operators which refer to the physical
processes and “bad” operators which prevent the one-
particle states to be the eigenstates of the total
Hamiltonian, respectively. “Mass-" and “vertex-like”

operators, O and O of g"-order, which replicate

the structures of the mass and vertex counterterms M,
and V,

ren 2

respectively. Assuming the latter expanded in

_ZMZk

ren 2 ren

©

Z (2k+1) we

expect the mass and charge corrections to have the same
expansions.
After the clothing

H.(@.)=H,(a)+[RH,]+V (a,)
M., (@.)+[RV]

+7.. (@ c)+§[R,V]2+[R,Mren]+..., )

ren

powers of g M,

the Hamiltonian contains bad terms of all orders in g .

Thus, the generator R = . R™ has all orders in g and
k=1

contains same operator structures as “bad” terms.
The primary interaction operator V' consists of the

(1)

g'-order bad terms H,’ =V . Therefore, we are going

to define the generator R"Y in the following way [3]:

oY +[R<1>,HF} -0. (10)
Adopting this definition, we have

H, (a,)=H, (a(,)+%[R() v]+ml)

+§[R(l),VT RO MO ]+ (11)

The g”-order contribution to H (e,) is
%[R“ V]+M£m with the decompositions

M) (om®,ou® )= M) (b'b,d'd,a"a)
+M{), (d'b', a'a' He);

[RV.¥]= [R“),V]M (b'b.d"d.a"a)

+[R(l),V]M“b (a'0", a'a",He)

[ RY, Vl,g (b6"bb,b"a"ba etc)

+[R(l),Vlﬂb (b'ba"a’ etc). (12)

Following [3,4], to determine the mass shifts in the g -

order we require

M +1[R<1),V] =0, (13)
M .g

ren,g 2

finding the g” -order mass corrections in the form

Sut? = 2g

(27

4
x&12 (P _k,P,—k){l +4(M§Tﬂ4} 5

2

g
by [1,(p)+L(p)],

d
I pgu (p-k.p.k)

dk
I(p)= Iw_gl,l (p»p _ksk)gl,l (p,p —k,—k)
k

R
PRV Zapk i v2pk]”
L(p)= J 811 pp kk)gll(pp k, k)

m’ — pq m’ + pq
X{Z[mz—pq}—#z+2[m2+176]]—#2}, o

where p:(Ep,p), q:(Eq,q) and k=(a k). To
derive these expressions in the covariant form it is
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sufficient to put g, (p.p-k.k)=g ,(p-k.p,—k)
and g,, =g, which leads to g,,=g,,. The mass

shifts derived are expressed through the three-
dimensional integrals whose integrands depend on
certain covariant combinations of the relevant three-
momenta, providing the momentum independence of
the mass renormalization. The present results prove to
be equivalent to the results obtained by Dyson-Feynman
technique if weput g, , =g .

4. SOME GENERAL LINKS

Let us consider the momentum independence in
question from a general point of view and look at the
one-particle matrix elements

(k| S[i) = (e[ 1487+ 5P+ [1c), (15)

to be definite with the spinless states |k)=a'(k)|Q,)
as in case of pion, where, e.g.,

K|SP|K) = 27i8 (@, — o ) (K| TP () [K), (16)
with the second order T -operator

T (w )=V (o +i0-H,) V. (17)

To set links with previous discussions it is sufficient
to note that on certain conditions the following relation

%(k‘|[R“),V]|k> =(K|V (@, +i0—-H, )" V|k) (18)
holds within the model discussed if the pion mass
4 < 2m . In particular, it means that the propagator with
the intermediate nucleon-antinucleon states in Eq. (18)
is not singular for @, > x. Then, according to [3], the
solution of equation (10) can be presented in integral
form

R =i lim .([dtVD (t)e™, (19)
and the proof of Eq. (18) becomes trivial.

Using the translational invariance of V', it is readily
seen that

5(K-k

<k'|V(a)k+i0—HF)1V|k>=T)G(k). (20)

Normally, V =[dxV'(x) where the interaction

density ¥ (x) in the Dirac picture is the Lorentz scalar
U(A)V, (x)U " (A)=V, (Ax). (#2))

Such introduction of interaction density may be inherent
not only in a local field theory.
Then, exploiting Eq. (18) and the representation

(@ +i0—H, )" =i lim [dre >,

£—>0+ (22)
one can show that
G(k)=~i(27) lim ! dte“jdp(s(l;—k'k)
1 1
x(Q,|a(k)V, (Ep)V(—EpjaT (k)|Q,).  (23)
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Here, as in [3], we are addressing the operators
a(k) = a)ka(k) that meet the covariant commutation

rules
[a(k).d’ (k) ]= o, 5(k -K).
This results in appearance of a typical combination

6(("1( —a)k)5<k' —k)

Wy

(24)

C (k) , (25)

in the correspondent § -matrix element and one only

needs to remember the relativistic invariance property
(k[ S|k} _ (AK|S|Ak)
\/ @y Wy \/ Wpe O

. (26)

This consideration gives us a possible (probably,
general) way when finding the momentum
independence of mass shifts within this three-
dimensional formalism, at least, in first nonvanishing
order in the coupling constant.

5. CONCLUSION

We have demonstrated here how the mass shifts in
the system of interacting pion and nucleon fields can be
calculated by the use of the «clothed particle
representation. The respective mass counterterms are
compensated and determined directly in the
Hamiltonian. We are dealing with the coincidence of
the two divergent quantities: one of them is determined
by the nucleon mass renormalization one-loop integral,
while the other stems from the commutator [R,V]. We

are trying to overcome this drawback by means of the
introduction of the cutoff functions in momentum space.
Such functions have certain properties conditioned by
the basic symmetry requirements imposed upon the
theory.

The procedure described above has an important
feature, viz., the mass renormalization is made
simultaneously with the construction of a new family of
quasipotentials (Hermitian and energy independent)
between the physical particles (the quasiparticles of the
method). Explicit expressions for the quasipotentials
can be found in [1].

By using a comparatively simple analytical means,
we could show that the three-dimensional integrals,
which determine the pion and nucleon renormalizations
in the second order in the coupling constant g, can be

written in terms of the Lorentz invariants composed of
the particle three-momenta. In other words, these
integrals are independent of the particle momenta.
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MIPEJICTABJEHUE OJETBIX YACTHUII B KBAHTOBOM TEOPUH I1OJIA:
INEPEHOPMHWPOBKA MACCBI

B.IO. Kopoa, A.B. Illebexo

MeTtox yHHWTapHBIX OICBAIOIMX MpeoOpa3oBaHUI MPHMEHEH B MOJEIH KBAaHTOBOH TEOPHH IOJIS, B KOTOPOU
HYKJIOHHOE Y HEUTpaJibHOE MHOHHOE T0JI1 B3aUMOJEHCTBYIOT MOCPEICTBOM PErYJIIPU30BaHHON MCEBIOCKAISAPHOMN
cBa3u tuna lOxaBel. B 3TOM moaxone MaccoBbleé KOHTPYIEHBI YAaCTHMYHO COKPAINAIOTCS C KOMMYTaTOpamu
TEHEPAaTOPOB O/ICBAIOIINX IPEOOPa30BaHMI M OINEPATOPOB B3aWMOAEHCTBHUS, (POPMHUPYSI NMHOHHBIC W HYKJIOHHBIC
caBurn Maccel. HalifieHHbIE BETHMUYMHBI BBIPAXKAIOTCA TPEXMEPHBIMU HHTErpajlaMd OT HEKOTOPBIX KOBAPHAHTHBIX
K0M6I/lHaHl/II‘/II COOTBETCTBYIOIIUX HUMITYJIbCOB YacCTHUIL, YTO O6CCH6‘-II/IBaeT HE3aBUCUMOCTDb PACCUUTAHHBIX IMOIIPABOK
oT umiysiscoB. OmpeseneHsl yClIoBUs, HalaraeMble Ha oOpe3aroliye BepIIMHHBIE (DYHKIUH, OCYIIECTBIISIONINE
pETYyISIpU3anunIo CBA3H TOJIEH.

30BPAKEHHSI OJAATHEHUX YACTHHOK B KBAHTOBII TEOPIi IOJIA:
INEPEHOPMYBAHHS MACH

B.I1O. Kopoa, O.B. ILllebexo

Merto/ yHITapHUX OAATAIOYHMX MEPETBOPEHb 3aCTOCOBAHO B MOJEJI KBAHTOBOI TeOpii MoJIs, B sKi HYKJIOHHE i
HEHTpaspHe MIOHHE TOJSA B3a€EMOIIIOTH Yepe3 peryisapu3oBaHUi 3B’s30K Tumy IOkaBu. B mpomy migxomi mMacosi
KOHTPWICHH YacTKOBO CKOPOYYIOTBCS 3 KOMYTAaTOpaMM TI'€HEpaToOpiB OIfraroyMX IEepeTBOPEHb 1 oneparopis
B3aeMofii, 10 (QOpMye MiIOHHI Ta HYKIOHHI 3CyBHM Mac. 3HAWIeHI BEIHYMHH [OJAIOTHCS TPUBUMIPHUMHU
iHTerpajlaMn BiJl JIeSKMX KOBapiaHTHUX KOMOIHAIii BIJNOBIIHMX IMIYJBCIB YacTHHOK, 0 3abe3neuye
HE3aJICKHICTh PO3paXxOBaHHX IONPABOK B iMIyJibCiB. BH3HAYeHO YMOBH, IO BHCYBAIOTHCS NIO0 BEPIIMHHHX
(hyHKIIH, K1 3AIHCHIOIOTH PETYIAPHU3AINIo 3B’ SI3KY IMOJIB.
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