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The density, spin and isospin correlation functions in nuclear matter with a neutron-proton (np) condensate are
calculated to study the possible signatures of the BEC-BCS crossover in the low-density region. It is shown that the
criterion of the crossover (Phys. Rev. Lett. 2005, v. 95, 090402), consisting in the change of the sign of the density
correlation function at low momentum transfer, fails to describe correctly the density-driven BEC-BCS transition at
finite isospin asymmetry or finite temperature. As an unambiguous signature of the BEC-BCS transition, there can
be used the presence (BCS regime) or absence (BEC regime) of the singularity in the momentum distribution of the

quasiparticle density of states.
PACS: 21.65.+f; 21.30.Fe; 71.10.Ay

1. INTRODUCTION

The transition from BCS superconductivity to Bose-
Einstein condensation (BEC) occurs in a Fermi system,
if either density is decreased or the attractive interaction
between fermions is increased sufficiently. This transi-
tion was studied, first, in excitonic semiconductors [1].
Later it was realized that an analogous phase transition
takes place in symmetric nuclear matter, when np Coo-
per pairs at higher densities go over to Bose-Einstein
condensate of deuterons at lower densities [2, 3]. Dur-
ing this transition the chemical potential changes its
sign at certain critical density (Mott transition), ap-
proaching half of the deuteron binding energy at ultra
low densities. In Ref. [3] crossover from np superfluid-
ity to BEC of deuterons was investigated in the T-
matrix approach, where the pole in the T-matrix deter-
mines the critical temperature of BEC of bound states in
the case of negative chemical potential and the critical
temperature of the appearance of np Cooper pairs in the
case of positive chemical potential. The influence of
isospin asymmetry on the BEC-BCS crossover in nu-
clear matter was studied in Ref. [4] within the BCS
formalism. It has been shown that Bose-Einstein con-
densate is weakly affected by an additional gas of free
neutrons even at very large asymmetries. The same con-
clusion was also confirmed in Ref. [5] on the base of
the variational approach for the thermodynamic poten-
tial. The recent upsurge of interest to the BEC-BCS
crossover is caused by finding the BCS pairing in ultra-
cold trapped quantum atom gases [6]. In this study we
examine the possible signatures of the BEC-BCS cross-
over in low-density nuclear matter. It may have interest-
ing consequences, for example, in the far tails of the
density profiles of exotic nuclei, where a deuteron con-
densate can exist in spite of the fact that the density
there can be quite asymmetric. Besides, similar physical
effects can play an important role in expanding nuclear
matter, formed in heavy ion collisions, or in nuclear
matter in the crust of a neutron star. The main emphasis
is laid on the behavior of the density, spin and isospin
correlation functions across the BEC-BCS transition
region. The study is motivated by the results of Ref. [7],

where the authors state that the density correlation func-
tion of a two-component ultracold fermionic gas of at-
oms changes sign at low momentum transfer and this
represents an unambiguous signature of the BEC-BCS
crossover. This statement is checked for nuclear matter
taking into account additional factors: finite isospin
asymmetry or finite temperature. In both cases, this cri-
terion fails to provide a correct description of the den-
sity-driven BEC-BCS crossover and cannot serve as the
universal feature of transition between two states of the
system.

2. BASIC EQUATIONS

Superfluid states of nuclear matter are described by
the normal f and anomalous g distribution functions

of nucleons
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where x =(k,o,7), k is momentum, o (7) is the pro-
jection of spin (isospin) on the third axis, o is the den-
sity matrix of the system. We shall study np pairing
correlations in the pairing channel with total spin S and
isospin 7 of a pair S=1, T=0 and the projections
S, =T, =0. In this case the distribution functions for

isospin asymmetric nuclear matter have the structure
J (&)= foo(K)ogzg + fo3(K)og73 (2)
g(K) = g39(k)o30,73,

where o; and 7, are the Pauli matrices in spin and
isospin spaces, respectively. Using the minimum princi-
ple of the thermodynamic potential and procedure of
block diagonalization [5], one can obtain expressions
for the distribution functions
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Here
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A being the energy gap in the qua51part1cle excitation
spectrum, m being the effective nucleon mass, g and

ou being half of a sum and half of a difference of neu-

tron and proton chemical potentials, respectively.

Equations, governing np pairing correlations in the
S =1, T=0 pairing channel, can be obtained on the
base of Green's function formalism and have the
form [5]
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where f(E) is Fermi distribution function. Eq. (7) is
equation for the energy gap A and Egs. (8), (9) are
equations for the total density p=p, +p, and neu-

tron excess op =p, —p, =ap (a being the asym-

metry parameter). Introducing the anomalous density
A(k)
V0= (o745 )= 5 01D )

and using Eq. (8), one can represent Eq. (7) for the en-
ergy gap in the form
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In the limit of vanishing density, n; — 0, Eq. (10)

goes over into the Schroedinger equation for the deu-
teron bound state [2,4]. Corresponding energy eigen-
value is equal to2u . The change in the sign of the

mean chemical potential g of neutrons and protons

under decreasing density of nuclear matter signals the
transition from the regime of large overlapping np Coo-
per pairs to the regime of non-overlapping bound states
(deuterons).

Let us consider the two-body density correlation
function

D(x,x") = Tr pAr(x)An(x"), An(x)=n(x)—n, (11)
fl(X) = Z l//;‘[ (X)l//O'T (X) s
oT
n being the spatial average of n(x). Its general struc-
ture in the spatially uniform and isotropic case reads [7]

D(x,x') = p3(r)+ pD(r) , (12)

The function D(r) is called the density correlation

r=x—-x'.

function as well. We will be just interested in the behav-

ior of the function D(r). After calculating the traces in
Eq. (11), for its Fourier transform one can get
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Here j, is the spherical Bessel function of the first
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represent the normal and anomalous contributions to the
density correlation function. Analogously, we can con-
sider the two-body spin Sand isospin T correlation

functions
Sy (6x") = Tr pAS , (N)AS, (x'), AS, (%) = 5, (05,

kind and zeroth order. The functions
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5,1, being spatial averages of §,(x),7,(x), respec-
tively. Their general structure for isospin asymmetric
nuclear matter without spin polarization is

Sy (%,X") =§6W5<r>+psw<r>, (16)

ap .
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Then, calculating traces in Egs. (14), (15), for the Fou-
rier transforms of the spin and isospin correlation func-
tions one can get
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Note that if to put x =v =3 in Egs. (18), (19), one gets

and isospin T ! correlation
v =12 gives the transverse

the longitudinal spin s’
functions, while setting 4,

spin and isospin correlation functions
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The following relationships between the correlation
functions hold true

D
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At zero temperature and zero momentum transfer,
the correlation functions satisfy the sum rule
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where the r.h.s. is independent of density and isospin
asymmetry. Besides, the transverse isospin correlation
function satisfies the relationship
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where the r.h.s. is independent of density.

3. CORRELATION FUNCTIONS IN NUCEAR
MATTER WITH A NP CONDENSATE

Further for numerical calculations we shall use the
effective zero range force [5], developed to reproduce
the pairing gap in S =1,7 =0 pairing channel with
Paris NN potential:
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where py =0.16 fm™ is the nuclear saturation density,

vo =530 MeV - fm? , =0, m=mg, mg being the
the effective mass, corresponding to the Gogny force
DIS. Besides, in the gap equation (7), Eq. (24) must be
supplemented with a cut-off parameter, &, = 60 MeV .

To find the correlation functions one should first solve
the gap equation (7) self-consistently with Egs. (8), (9).
Then the correlation functions can be determined di-
rectly from Eqgs. (13), (18) and (19). The results of nu-
merical determination of the energy gap as a function of
density for different asymmetries at zero temperature
are shown in Fig. 1.
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Fig. 1. Energy gap as a function of density at zero

temperature and different asymmetries
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As one can see, with increasing asymmetry the
magnitude of the energy gap is decreased and the den-
sity interval, where a np condensate exists, shrinks to
lower density. In reality solutions exist for any «a <1
(the phase curves for larger values of « are not shown
in Fig. 1) and correspond to the formation of BEC of
deuterons at very low densities of nuclear matter.

Now we consider the correlation functions D(g)

and S'(g) for symmetric nuclear matter at zero tem-

perature, depicted in Fig. 2 (at & =0, T'(¢) = 5" (¢))).
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Fig. 2. Density and transverse spin correlation
functions as functions of momentum at zero temperature
and different densities for symmetric nuclear matter

The density correlation function changes sign at low
momentum transfer when the system smoothly evolves
from the BEC regime to the BCS one. These two re-
gimes are distinguished by negative and positive values
of the chemical potential 4, respectively. In view of

Eq. (21), the longitudinal spin correlation function
s’ (q) changes sign through the BEC-BCS crossover as

well. The transverse spin correlation function, and, ac-
cording to Eq. (21), the longitudinal and transverse iso-
spin correlation functions change fluently between BEC
and BCS limits. The behavior of the density correlation
function in isospin symmetric case at zero temperature
qualitatively agrees with the behavior of the density
correlation function in an ultracold fermionic atom gas
with singlet pairing of fermions [7]. In Ref. [7] the
change in the sign of the density correlation function at
low momentum transfer was considered as a signature
of the BEC-BCS crossover. We would like to extend
their calculations taking into account the finite isospin
asymmetry and finite temperature.

Fig. 3 shows the dependence of the density correla-
tion function D(g =0) at zero momentum transfer as a

function of density for a set of various isospin asymme-
try parameters and zero temperature. It is seen that with
increasing the asymmetry parameter the density correla-
tion function decreases. For strong enough asymmetry,



the function D(q =0) is always negative. In accor-
dance with the above criterion, the density region,
where the function D(g =0) has positive or negative

values, would correspond to the BEC or BCS regime,
respectively.
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Fig. 3. Density correlation function D(q =0) as a

function of density at zero temperature for different
isospin asymmetry parameters

Hence, as follows from Fig. 3, for strong isospin
asymmetry we would have only the BCS state for all
densities where a np condensate exists. Obviously, this
conclusion contradicts with the behavior of the mean
chemical potential 4 being negative at very low densi-

ties for any a <1, and, hence, giving evidence to the
formation of BEC of bound states [5]. Thus, at strong
enough isospin asymmetry the criterion of the cross-
over, based on the change of the sign of the density cor-
relation function, fails to predict the transition to the
BEC of deuterons in low-density nuclear matter.

Now we consider symmetric nuclear matter at finite
temperature. Fig. 4 shows the dependence of the density
correlation function D(q =0) at zero momentum trans-

fer as a function of density for a set of various tempera-
tures. It is seen that for not too high temperatures the
density response function is nonmonotonic and twice
changes sign in the region of low densities.
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Fig. 4. Density correlation function D(q =0) as a

function of density at different temperatures for sym-
metric nuclear matter

Hence, in accordance with the above criterion, we
would have the density interval p; < p < p, with the

BEC state, surrounded by the density regions with the
BCS state. However, this conclusion contradicts with
the behavior of the mean chemical potential x for these

temperatures, being a monotone function of density and
indicating the formation of a BEC state at low densities
(1 <0) and a BCS state at larger densities (x> 0).

Thus, at finite temperature the criterion of the crossover,
formulated in Ref. [7], fails to provide the correct de-
scription of the transition between two regimes.

Qualitatively the boundary between BEC and BCS
states corresponds to the point, where the chemical po-
tential changes its sign. According to Eq. (6), at this
point there is a qualitative change in the quasiparticle
excitation spectrum: the momentum corresponding to
the minimum in the excitation spectrum shifts from a
finite value in the BCS state to the zero value in the
BEC state. The appearance of the minimum in the qua-
siparticle excitation spectrum is clearly reflected in the
quasiparticle density of states

1 k2
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The density of states v(k) is singular in the station-

ary points of the excitation spectrum (% =0), except

the point k£ =0, where v(k) vanishes, assuming that

% goes to zero no faster than K. Thus, the appear-

ance of the singularity in the momentum distribution of
the quasiparticle density of states represents the univer-
sal signature of the BEC-BCS transition (see also
Ref. [8]).

4. DISCUSSION AND CONCLUSIONS

The transition from large overlapping Cooper pairs
to tightly bound pairs of fermions can be described en-
tirely within the mean-field approximation (BCS the-
ory). An important question appears: to what extent can
the BCS theory be trusted and what is the role of the
beyond mean-field effects? In order to give a correct
answer, it is necessary to compare calculations, based
on the BCS theory, with the results of more exact

schemes. The value of %F for n = (askF)_1 =0 (ay

being the s-wave scattering length) is usually referred to
as the "unitary limit". In this limit, when the density is
held fixed, one expects that all sensitivity to the detailed
features of the interaction is lost. As a result, this limit
is particularly sensitive to many-body correlation ef-
fects, and the BCS calculations, based on the single-
parameter potential, predict this value as being equal to
0.59 in the isospin symmetric case and at zero tempera-
ture [8]. Recent more accurate calculations based on the
Green's function Monte Carlo approach [9] have low-
ered the upper limit on this ratio to 0.44+0.01, which
shows that beyond mean-field effects account for at
least a 25% improvement in the binding energy over the
mean-field result. Thus, the consideration based on the
BCS theory, gives a qualitatively correct picture of the
BEC-BCS transition, but further work is needed in or-
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der to include many-body effects in a quantitative way
and to study the changes in the features of the BEC-
BCS crossover.

In summary, we have calculated the density, spin
and isospin correlation functions in superfluid nuclear
matter with np pairing correlations, intending to find the
possible signatures of the BEC-BCS crossover. It is
shown that the transverse spin, and longitudinal and
transverse isospin correlation functions satisfy the sum
rule at zero momentum transfer and zero temperature,
and change smoothly between BEC and BCS regimes.
In Ref. [7], it was learned that the density correlation
function in a two-component ultracold fermionic atom
gas with singlet pairing of fermions changes sign at low
momentum transfer across the BEC-BCS transition,
driven by a change in the scattering length of the inter-
action at zero temperature. We have shown that for spin
triplet pairing the longitudinal spin correlation function
plays an analogous role to the density correlation func-
tion and changes sign at low momentum transfer across
the crossover in symmetric nuclear matter at zero tem-
perature. However, while giving a satisfactory descrip-
tion of the density-driven BEC-BCS crossover in dilute
nuclear matter at zero temperature for the isospin sym-
metric case, this criterion fails to provide the correct
description of the crossover at finite isospin asymmetry
or finite temperature. Hence, the criterion in Ref. [7]
cannot be considered as the universal indication of the
BEC-BCS transition. During the Mott transition, when
the chemical potential changes sign, there is a qualita-
tive change in the quasiparticle energy spectrum: the
minimum shifts from a finite (BCS state) to zero-
momentum value (BEC state). As such, the presence
(BCS) or absence (BEC) of the singularity in the mo-
mentum distribution of the quasiparticle density of

states represents the universal signature of the BEC-
BCS transition.
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KOPPEJISLIIMOHHBIE ®YHKIIAU B OBJIACTH BKIII-B3K-TIEPEXO/JIA B IIEPHOI MATEPUA

A.A. Hcaees

[Momy4eHs! KOppessUOHHBIE (YHKIMH O TUIOTHOCTH, CIIMHY W M30CHHMHY B SIEPHOW MaTepuu ¢ HEWTpPOH-
MIPOTOHHBIM KOHAEHCATOM C IENbI0 M3Y4YeHHs BO3MOXHBIX mpu3HakoB BKIII-BOK-mepexoma B o0macTé MaibIx
mwioTHocTer. [lokazaHo, uro kpurepmii mepexona (Phys. Rev. Lett. 2005, v. 95, 090402), cocTosmmii B MI3MEHEHUN
3HaKa KOPPESIIMOHHON (YHKIMH 10 TUIOTHOCTH NPH MAaJbIX NEpeAaHHbIX MMITYJIbCax, SIBJISETCS HealeKBaTHBIM
st onucanuss BKIII-BOK-nepexona npu xoHeuHOU acuMMeTpuu win Temneparype. COOTBETCTBYIOIIUM OJHO-
3Ha4YHBIM KpurepueM sBisercs: Hammuue (BKI) mmn orcyterBue (BOK) ocobeHHOCTH B NMITyJIBCHOM pacripezene-
HUY TJIOTHOCTH COCTOSIHUN KBa3WYaCTHII.

KOPEJISININHI ®YHKIIII B OBJIACTI BKUI-BEK-IIEPEXOY SIIEPHOI MATEPIi
0.0. Icacs

3HalineHi KopesaniiHi QyHKIT 3a MIUTBHICTIO, CIIIHOM Ta i30CHIHOM B SepHii MaTepii 3 HEHTPOH-TIPOTOHHUM
KOHJICHCaTOM 3 MeToro BHBYeHHs MoxuinBuxX o3Hak BKII-BEK-mepexony B obmacti HU3bKHX TycTHH. [lokazaHo,
o kputepiit mepexoay (Phys. Rev. Lett. 2005, v. 95, 090402), sikuii mosisirae y 3MiHi 3HaKa KOPENAMiAHOT QyHKITIT
3a MUTBHICTIO MPH MalUX TepelaHuX iMITylbcax, € HeamekBaTHIM 1 omrcy bBKII-BEK-niepexomy npu ckiHdeHOT
acumMetpii abo Temmeparypi. BimnoBimauM ogHo3HawHHM KpuTepiem € HasBHicTh (BKII) a6o BimcytHicts (BEK)
0COOJIMBOCTI B IMITYJIbCHOMY PO3IOJIiJII IUILHOCTI CTaHIB KBa31YaCTHHOK.
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