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Given an explicit construction of the grade star hermitian adjoint representation of osp(2/1;C) graded Lie alge-

bra, we consider the Baker-Campbell-Hausdorff formula and find reality conditions for the Grassmann-odd trans-
formation parameters that multiply the pair of odd generators of the graded Lie algebra. Utilization of su(2) -spinors

clarifies the nature of Grassmann-odd transformation parameters and allows one an investigation of the correspond-
ing infinitesimal gauge transformations. We also explore the action of a corresponding group element on an appro-
priately graded representation space and find that a proper (graded) generalization of hermitian conjugation is con-
sistent with a natural generalization of Dirac adjoint. A corresponding generalization of a unitary transformation is

discussed.
PACS: 11.10.Ef, 11.15.-q

1. INTRODUCTION

A natural extension of the Lie algebras, which un-
derlie the modern gauge theory, are graded Lie algebras
introduced and studied to some extent in the articles [1-
3]. In this paper we explore how one can utilize a Z, -

graded extension osp(2/1;C) of the compact Lie alge-
bra su(2) for the purposes of defining a meaningful
gauge theory of the Yang-Mills type (see, e.g., [4-6]).
The form of osp(2/1;C) defining relations (proposed

in [5] and refined in [6]) utilizes the Pauli matrices and
strongly suggests a relation to spinors. Exponentiating
the algebra, we observe the necessity of introduction of
anticommuting (Grassmann-odd) spinors, which multi-
ply the odd generators of the graded Lie algebra. Fi-
nally, we study some of infinitesimal properties of the
composition law of group transformations and consider
a generalization of the Dirac adjoint, thus, making
preparations for an investigation of the gauge invariance
of the proposed field strength for such a gauge theory,
[5-6].

2. GRADED LIE ALGEBRA OSP(2/1;C)
The algebra osp(2/1;C) is a graded extension of
su(2) algebra by a pair of odd generators, 74, which

anticommute with one another and commute with the
three even generators, 7, of su(2). It is customary to

assign a degree, degT,, , to the even (deg7,= 0) and
odd (degr 4= 1) generators. We use the square brackets
to denote the commutator and the curly ones to denote
the anticommutator. The defining relations have the
form, [3,5-7]:
, 1 B
[Ta’ Tb] = lgabcTc; [Ta’ TA] = *(O-a)A B
2
; (D
{ta T8} :E(Ga)ABTa'

Summation is assumed over all repeated indices. Low-
ercase Roman indices from the beginning of the alpha-
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bet run from 1 to 3; uppercase Roman indices run over
land 2; 6, = 5 (Oab =0pa)s €abe (Eape = 1) and

€4B (elzzelzz 1) are the three dimensional identity

matrix and the Levi-Civita totally antisymmetric sym-
bols in three and two dimensions, respectively; the ma-

trices (0,),” [(@Dus= (@pa= 6"(0)az

=50, 8= 6™0y)  ecp] are just the usual
Pauli matrices:

T R ]
(a“)AB{[_OI ?}(_oi -Oz]((l) Olﬂ'

We use the Levi-Civita symbols in two dimensions to
raise and lower uppercase Roman indices paying atten-
tion to their antisymmetric properties:

0 1
AB -1
X =|e |=(_1 OJZHEAB”:_Z :

Note that, as concerned to these indices, we are working
with two-component spinors and adopt conventions of
the book [8]. We shall follow those conventions as
more suitable for our purposes even when complex con-
jugation of spinor and Grassmann quantities is in-
volved.

It turns out that not all of the osp(2/1;C) algebra
generators are hermitian. A proper generalization of the
hermitian conjugation is denoted by (i): on the even
generators the operation coincides with ordinary hermi-
tian conjugation (') while the odd ones obey more

complicated relations. Following the papers [9-10], we
shall call them the grade star hermiticity conditions:

TI =%7

)

H

Fo

where 7, =7 £it,.
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Let us consider complex-valued matrices:

A 0 0 B
M eyen = 0 D and M,qq = c o)

where, for the purposes of this paper, B and C are
2x 3 rectangular blocks and 4 and D are 3x3 and
2 x 2 square blocks representing the division of a repre-
sentation space into even and odd parts. On these matri-
ces the grade star hermiticity condition reads

470 ¥ 0o -c*
Meiven:[o D+] andMOdd:[B+ o I

We shall also use multiplication of algebra generators
by scalars. Such an operation must take into account
that Grassmann-odd scalars anticommute with the odd
algebra generators while commute with complex num-
bers and the even algebra generators, [11]. The follow-
ing construction possesses all of these properties. Let a
be a scalar and dega be its degree (0 or 1 depending on

whether it is Grassmann-even or Grassmann-odd, re-
spectively). Then multiplication by a is defined as fol-
lows:

de
aM eyen= M cyena and aM ,q4= (GR)) gajwodda .

3. THE GROUP PROPERTY

Given a Lie algebra one can turn over to a Lie group
by exponentiating the generators multiplied by trans-
formation parameters. This, in a usual fashion, gives us
the gauge transformations. In the case of a graded Lie
algebra we are faced with a problem: anticommutators
seem to rule out the application of the Baker-Campbell-
Hausdorff formula, which is necessary to prove that
subsequent transformations do not leave the group
manifold. This problem is solved via introduction of
Grassmann-odd parameters (cf., [1]). In the case under
consideration these are Grassmann-odd su(2) - spinors

(fA s 64 , etc., which multiply the odd generators. They
are included on equal footing with ordinary (Grass-

mann-even) parameters £¢ multiplying the even gen-
erators (hopefully, there will not be confusion about use
the same kernel letter, ¢, to denote a Grassmann-even
transformation parameter and the Levi-Civita totally
antisymmetric symbol in three dimensions). By defini-

tion, & 4 s 04 , etc. satisfy
[e%,071=0;
Lo et =% =0,
[£4,0%1=0.

Then, the necessary relations can be given in terms of
commutators only:

(677 ,4,6575] =—§<§{A93}+ 198N 15T,

where £H9BI= (£108 +£B94y/2 and M8l =

& 4B _ §B 04 )/2 are convenient shorthand nota-
tions. This result was obtained using anticommutator for

odd generators in definition (1). Using a fundamental
fact of spinor algebra, €4B€cp +

€4c€pp + €4p<€pc=0, one can calculate

1
107 = (e ™

From symmetry of (o) 45 in the uppercase indices, it
then follows that

[E47,4,0875] =—§§{A«93}(aa>ABTa

[£4,051(c*) 48T,

i 3)

2
and, in particular, the commutator [9’41 A,HB 7] van-
ishes identically. One can also calculate

(9T, ,e"Ty 1= ixl@ePe ), T¢;

[8“Ta,9ATA] =%g”c9A(0'a)ABrB,

where gaQA(aa) AB is again a Grassmann-odd trans-

formation parameter.
Group elements are obtained by exponentiating the
algebra

Ul(s,0) = expli(e°T, + 07 )] (4)
and the Baker-Campbell-Hausdorff formula,
expMexpNzexp(M+N+%[M,N]+...) &)

may be applied to determine motion in the parameter
space under a (left) multiplication with a group element

U(k,¢&):
Ue',0)=U(x,EU(¢,0) . (6)

4. INFINITESIMAL TRANSFORMATIONS
AND REALITY CONDITIONS

Let us examine expression (5) restricting ourselves
by taking into account the first non-trivial contribution
— the two-fold commutator [M,N]. Writing M =

i(£°T, +0"7 ;) and N = (T, +0" 7 ;), we have
1
i(g“Ta+6’ATA)=M+N+E[M,N]+...,

where dots denote the sum of linear combinations of & -
fold (k > 2, k € Z) commutators of M and N [12].
Substituting expressions for M, N and using (3), we
obtain after some algebra

e =¢g% K”—%Kbgcgbca+%[§A,HB](aa)AB s
o4 =94 g4 +i(xb93 RPN (20 TN ¢)
Here again dots denote the contribution from the sum of
linear combinations of & -fold (k > 2, k € Z) commu-

tators. The first three summands in the first row of for-
mula (7) reflect the non-commutative character of the
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proper Lie subalgebra, su(2), of osp(2/1;C) the last
one being contribution from the odd part of the algebra.
The last summand in the second row of the formula is
obviously a Grassmann-odd quantity, and it reflects the
non-commutative property of the even and odd parts of
the graded Lie algebra.

In the view of intended applications, contribution
from Grassmann-odd part of the algebra into the law of
composition of Grassmann-even parameters needs to be
investigated in more detail. First, let us calculate that

2AE4,081(0%) 4p
= £4e4B (59) SO0 —0,4e4B (09) S éc (8)
=¢(T5099-0Ts04¢,

where we employed some self-evident matrix notations;
the superscript (T ) denotes transposition. Comparing
the result (8) and a description of su(2)-spinors of
3D Euclidean space in the book [13, p. 48], one imme-
diately realizes that the last term of the first equation in
system (7) is, in general, a complex vector of
3D Euclidean space, e.g. it transforms like a vector un-
der SO(3) transformations. Second, the representation
(8) tells us that components of this vector vanish if
&4 =0, as required by a property of a one-parameter
subgroup of transformations (6). Finally, this vector
also has all components equal to zero if &, =-0,.

This shows that the inverse of the group element
U(e,0) has the form

Ul (&,0) = exp[-i(¢°T, + 67 ,)].

If one intends, as customarily done in a meaningful

Yang-Mills theory, to treat £9, x“, etc. as real-valued
Grassmann-even transformation parameters, then it is
necessary to impose some conditions on the su(2)-
spinors &, 8, etc. in order to ensure that (8) will be a
real 3D Euclidean vector. Such a condition must be
compatible with transformation properties of the corre-
sponding space of su(2)-spinors, &4, and take into
account that its members are also Grassmann-odd quan-
tities. In fact, this condition should involve a passage
from an su(2) -spinor to its conjugate and, thus, rely on
the definition of an anti-involution in the space of spi-
nors (see, e.g. [13, p. 100]). Let us observe first that for
a Grassmann algebra on one generator the last term in
the first relation in (7) vanishes identically. This is a
somewhat trivial situation. The next non-trivial one
arises when all su(2) -spinors under consideration take
values in a Grassmann algebra on two odd generators,
P and By B = B3 =0, Bifr=—P2p (see, eg.
[14, p. 7]). We shall employ lowercase Roman indices
from the middle of the alphabet running over 1 and 2 to
enumerate the decompositions of various quantities in
the corresponding basis of the Grassmann algebra. De-
composing &4 and @p into this basis one obtains

Sa=S&aPiand Op =0 f;,
i J
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where & 4 and 6 g are ordinary (commuting), su(2) -
i J

spinors of 3D Euclidean space, and summation over
repeated indices is assumed. In this case we can write

£4,0%1(0) 5= 2&&(?20“«3— «?Tz(r“g) . 9)

Now we shall impose some additional conditions on

su(2) -spinors & 4 and € 4, etc. to ensure that (9)
i J

gives a real Grassmann-even 3D Euclidean vector. One
way of doing so in a manner preserving all the spinor
transformations properties is to define

E=iC P Ep,0,=iC 05, e, (10)
1 2 1 2

where the ‘charge conjugation’ matrix C (CC = -1 ) is
given by

' 0 1 _ _
B B
C=[Cy, ||=(_1 O]=||CAv I=C. (11)

In (10) and (11) a bar over the spinors in the left-hand
sides of the relations and primes over the indices denote
complex conjugation. We again adhere to Penrose's
notations whenever spinors are concerned, [8]. The

L . B . .
charge conjugation matrix, C,~ , is responsible for

invariant preservation of spinor properties (for details
see, e.g. the review article [15, p. 72-73]; also compare
with the treatment in [13, p. 100]). Note that the defini-
tions (10) are essentially the proper generalization of
reality conditions from numbers to spinors. As also seen
from those definitions, each Grassmann-odd su(2)-

spinor &4, 64, etc. is defined by a single ordinary, i.e.
complex-valued Grassmann-even, su(2) -spinor. For the
sake of notations denoting

ng=¢4and 9p =0p,
2 2
respectively, we write

v =¢lsoep-0T s
1 2 1
=iTCTLc29-9TCT o).

On comparison with [13, p. 50], one can check that v
is indeed a real 3D Euclidean vector. In components it
reads:
1 Y a. - a
v =iy =Sy + 179 = Iim);
2 o _ o _
L7 = M + G 1Sy =Sy
3. a - a
o7 =i =S =129 +9y12).
These are obviously real quantities and the vector v
vanishes if and only if 77, = £3, as expected.

5. ACTION ON A REPRESENTATION SPACE

Having formulated meaningful reality conditions,
we are in position to explore action of the group ele-
ment (4) on a suitable vector space.



First, let us observe that because of definition of the
matrix U by its Taylor's expansion, the fact that the

generators 7, and 74 are ‘block’ and ‘off-block’ di-

agonal (see [6]), respectively, their multiplication prop-
erties and those of the Grassmann-even and Grassmann-
odd transformation parameters, it is easy to see that any
matrix U has a specific decomposition

(4B
v=[¢5)

where A is a (rx p ) sub-matrix, B is a (sx p) sub-

(12)

matrix, C is a (rxgq) sub-matrix and D is a (sxq)

sub-matrix. Following nomenclature of the book [14],
we shall call the matrix U a ( p/qxr/s ) super-matrix;

in the adjoint representation under consideration of ma-
trices 7, and 74, A is a (3x3) sub-matrix, B is a
(2x3) sub-matrix, C is a (3x2) sub-matrix and D is
a (2x2) sub-matrix. Moreover, the sub-matrices A4
and D have contributions only from an even number of
7 s’ multipliers and, hence, only even multipliers of
Grassmann-odd transformation parameters €'s’ are pre-
sent there. Thus, elements of those sub-matrices are in
the even subspace, CB,, of the complex Grassmann
algebra (for more details see the book [14, p. 10-11]).
The sub-matrices B and C by an analogues argument
include an odd number of 7 s” and &s’ multipliers and,
hence, are in the odd subspace, CB;,, of the complex
Grassmann algebra. Therefore, any such a super-matrix
U is an even super-matrix and by the results of the
previous section such matrices form a supergroup. Fur-
thermore, by construction any such a super-matrix is
invertible.

Second, consider even super-column ¥ [(p/qx

0/1) super-matrices] and super-row @ [(1/0xr/s)
super-matrices] vectors:

)
V=l |and @=(@,2,), (13)

2

where ¥ and @, are (1x p) and (rx1) sub-matrices,
¥, and @, are (1xg) and (sx1) sub-matrices, re-
spectively. The elements of ¥, and @, are Grassmann-
even and those of ¥, and @, are Grassmann-odd enti-

ties. Action of even super-matrices U on such even
super-column(-row) vectors transform them again into
even super-column(-row) vectors.

For the sake of argument let U be (1/1x1/1) ma-
trices [see (12)], the actual size can be easily treated the
same way, and let also ¥ be a (1/1x0/1) even super-
column vector as regarded to the linear transformations
defined below. The entries ¥ and ¥, themselves
could be, for example, Dirac bispinors. Consider a lin-
ear transformation

, WI, Agll-i-Bg/z
V' = = =UY.

, (14)
5”2 Cyl] +DSI/2

Taking transposition of each line in (14) (it acts on

¥;’s) and complex conjugate as well as denoting the

Dirac conjugates as ¥, , we obtain:
(#1.77) = (P A"V, B* ¥ |C*+¥, D*)
o A*

where the Grassmann character of the involved quanti-
ties has been taken into account. Recall that for any
super-matrix U partitioned as in (12) the super-
transpose is defined by

) AT (_DdegU cT
st — .
- (_ (_1)degU BT DT > (15)
for even super-column(-row) vectors this implies:
T T ; @
st = ,¥5) and % = Ll (16)
— @2
Given definitions imply
A CY_ (A4 CY*_( (A B)st\* 17)
-t D<) \-BD) | \CD ’
i.e. if, asin (14), ¥'=UY then
7 =Pyt (18)
thus, generalizing the corresponding result in the Yang-
Mills gauge theory.

It also follows from (17) that grade star hermitian

conjugation, denoted earlier by i, can be interpreted as
complex conjugated of super-transpose.

6. DISCUSSION AND OUTLOOK

The result (18) calls for a study of an analogue of
‘unitary’ property for matrices U given by (4). A first

suggestion would be to have U toy! , however, a
direct calculation shows that this does not hold. A direct
calculation shows that

(19)

The later equation in (19) is just a re-statement of her-
miticity of the even generators of the graded Lie algebra
osp(2/1;C) while the former one, to the best of the
author’s knowledge, for the first time exhibits a strong
connection between compact graded Lie algebras on
one side and Euclidean spinors on the other (cf. (2)).
This same property of 7,’s prevents one from having

(T, =T, and (z4)* = ~iC Py

Ut =U™". Traced back to basic definitions, the prob-
lem lies in the very definition of the super-transpose, in

particular, (7)) =¥ but

(((y,st)st)st)st -y ,

which also motivates our spinor approach to the treat-
ment of graded Lie algebras. In the view of this spinor
connection, it is understandable that a generalization of
unitary property for a matrix U given by (4) cannot
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have the form U =U"". In the theory of the Dirac
equation we have @ =¢" I1p, where the matrix I7,
which numerically coincides with y( in the chiral and
Dirac representations of y -matrices but not in the Ma-

jorana representation, defines the invariant real-valued
internal product on the (symplectic) space of Dirac
bispinors @, [15, p. 49-50; 16, p. 85]. Then, for a linear

transformation, S, ¢'= S preserving the internal

product, we have S* =17S7' 77! (cf, e.g., [17, p. 32])
instead of unitary property for S .

It is, therefore, natural to define an internal unitary-
symplectic product on the space given by even super-
vectors (13), where the adjoint representation of the
graded Lie algebra osp(2/1;C) acts, as

YiNY =inv (20)
with the matrices I7 given by
10
=4 3). @

Here [ is the square three-dimensional identity matrix
while hermiticity property of the square two-
dimensional matrix D remains to be determined. To
clarify this issue, let us consider the grade star hermitian
conjugated of (20) with account for (15):

winyt =it Hi =inv,

where

(1 0
m‘(omj'

Using (13) and (16), we infer

ni_[ D
(1)

where ¥, is (1x3) sub-matrix and ¥, is (1x2) sub-

matrix in terms of definition (13). Denoting ¥ = (S”I)I ,
we can preserve the invariant property of the internal
product (20) by requiring

my =1y .

This can be accomplished if the matrix D is anti-
hermitian

Dt =-D.

Taking into account the described analogy with the
Dirac bispinors, one is lead to the following choice:

{01
D—l( 10),

where the matrix D numerically coincides with io .

(22)

Thus, it is necessary to check that for a matrix U
given by (4)

26

Ut=nutm!
holds, where (21) and (22) define the matrix 7.
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I'PYIIIOBBLIE CBOMCTBA OSP(2/1;C) KAJIUBPOBOYHBIX IPEOBPA30BAHUMN
K. Hnvenuko

Ha ocHOBe sSIBHOI KOHCTPYKILIUH IPaAyHpPOBAHHOTO 000OIIEHHO-PMUTOBOTO MIPUCOSIUHEHHOTO MPEICTABICHHS
osp(2/1;C) rpanyupoBanHO# anreOpsl JIn paccmorpena ¢opmyina belikepa-KamnoOemna-Xaycnopdda n HaiineHst
YCJIOBHS BELIECTBEHHOCTH, HAJlaraeMble Ha IPacCMaHOBO-HEUYETHBIC TAPAMETPBI, KOTOPBIE SBISIOTCS MHOXUTEIAMH
napbsl HEYETHBIX TCHEPATOPOB IpajyupoBaHHON anreOpbl JIu mpu 3KkcroHeHUUpoBaHuu. Mcrnons3oBanue (Gopma-
au3Ma su(2) -CIIMHOPOB MOSICHSET MPHUPOLY PAaCCMaHOBO-HEUSTHBIX MApaMeTpoB M CYLIECTBEHHO O0Jerdyaer Hc-
CIIeIOBAaHUE COOTBETCTBYIOLIMX MH(PHHUTE3UMAJBbHBIX KaTHOPOBOUHBIX MpeoOpa3zoBaHuil. Takike M3ydeHO HeHCT-
BHE OOUIEro rPYyIIIOBOTO AJIEMEHTA Ha MOAXOJAIIEM IPOCTPAHCTBE MPEACTABICHUS U MIPOBEPEHO, YTO COOTBETCT-
ByIoIee (TpagyHpoBaHHOE) 0000IIEHIE SPMUTOBOTO COMPSDKEHHS COTTIACYeTCs C €CTECTBEHHBIM 00001IIeHneM -
pakoBckoro comnpspkeHusi. O0Cy)aaeTcs MoAXosAIIee 0000IICHUE YHUTAPHOTO MPEOOpa30BaHUsl COOTBETCTBYIOIIIEC-
IO BEKTOPHOT'O POCTPAHCTBA.

I'PYIIOBI BJIACTHUBOCTI OSP(2/1;C) KAJIIBPYBAJIbHUX IEPETBOPEHb
K. Invenxo

Buxonsuau 3 sSBHOI KOHCTPYKIIiT TpafyHOBaHOTO y3araJbHEHO-EPMITOBOTO MpHENHAHOTO ysBieHHS osp(2/1;C)
rpagyioBanoi anredpu Jli, posrisHyTo opmyny beiikepa-Kemmoemna-Xaycnopdda Ta 3HalineHo ymMoBH AiCHOCTI,
110 HAKJIQJAI0ThCA Ha ITPaCMaHOBO-HETApHI MapaMeTpH, AKi € MHOKHUKaMH IIapH HeTlapHHUX TeHepaTopiB rpaxyio-
BaHoi ayreOpu JIi Tipu ekcroHeHIiroBaHHI. Bukopucranus gpopmaiizamy su(2) -CiHOPIB MPOSICHIOE TIPUPOY Ipac-

MaHOBO-HENAapHUX TapaMeTPiB Ta CYTTEBO IMOJIETIIYE JOCIIPKEHHS BiIIOBIIHUX 1HQIHITE3UMAIBHUX KaliOpyBab-
HUX TIepeTBOPEHb. TakoX BHBYEHO [0 3arajlbHOr0 IPYMOBOTO €JIEMEHTY Ha IPHUIATHOMY IPOCTOpi YSBJIEHHS Ta
MIEPEBIPEeHO, 10 BiATIOBiAHE (TpaxyiioBaHe) y3aradbHEHHS €PMITIBCHKOTO CIPSDKEHHS TOTOIKYETHCS 13 IPHPOTHIM
y3araJbHEHHSIM IHPaKiBCBKOTO CHpshKeHHS. OOroBOPIOIOTHCA NMPHUAATHI y3aralbHEHHS YHITAPHOTO IEPETBOPEHHS
BiJITIOBIJTHOI'0 BEKTOPHOI'O MPOCTOPY.
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