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Spectral power of the oscillator radiation, which moves in periodically inhomogeneous potential, is investigated
analytically and numerically. Spectrum of the nonrelativigic oscillator can have a maximum a high numbers of
harmonics of basic frequency. Amplitudes of potentia at which the motion of oscillator become irregular are found. In
relativistic case a smal value of potential practically not influence on character of spectrum. The dependence of high-
frequency range of spectrum from value of potential inhomogeneity period is investigated. With decreasing of
inhomogeneity period the spectrum maximum is shifting into short-wave range. In linear approximation the dispersion
equation for oscillation excitation by ensemble of oscillators at frequency, which corresponds to the maximum of

radiation spectrum of single oscillator isfound.
PACS: 05.45.-a, 41.60.-m, 02.60.Cb, 29.27.Bd

1. INTRODUCTION

In the most of nonlinear Hamilton systems, which
describe the dynamics of particles, it is possble to sort
regions of phase goace where trgectories have regular
character and where they are stochastic. If we throw away
dsochagtic trgectories (i.e. trgjectories which lies near
separetrix) then dl the rest of trgectories will be periodic. In
our case regular trgectories will be periodic. Particles, which
will have a chaotic dynamics, will radiate random fields.

We restrict ourselves with particles, which have a
regular dynamics because only those ones can radiate
intensive coherent radiation.

Well specify and realize such conditions, fulfillment
of which leads to minimum of particles with stochastic
dynamics. Therefore in further well orient, first of all, by
particles with regular dynamics. The influences of
stochastic particles at this stage of anaysis well be
neglect, although we will make estimate their number and
minimizeit.

2. RADIATION OF PARTICLE WHICH

MOVESIN PERIODIC POTENTIAL

We'll describe the mechanism of high numbers
harmonics generation with nonrelativistic oscillators. Let
a charged particle moves in time-periodic eectric field

E(t) = B, >sin(w,, ®) and in field of periodic
potential U (z) =U, +g>cos(k xz) . For simplicity we'll

consider that motion occur only aong z-axis. In genera
the equation of electron motion will be write:
1
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wherellEU =-NU , € - electron charge.

As far aswe, firg of al, are interested in particle motion
along z axis, so we'll get dimensionless form of equation
(2) for given component

J'[% p+Woosin(z) =e>sin(W!t ),
: d z=—P =-p @
ot Jrepr

where p=p,/mc, z =kz, t =kcx , W =eg/mc* ,
e=eE,d/2pmc’,b =V,/c,W, =1, /d ,k=2p/d.
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When intensities of the fields are smal enough it is
possibl e to consider nonrelativistic motion of particles:

z*+\/\/20>sin(z)=e>sin(V\{<1>t). €)
Moreover, let us consder case E >>k g . While passing
into moving coordinate frame z =x - e} ssin(W ' )
equation (3) takesform

;z-v\/gxg Jn(m)>sin(x-(n>§/\/kl)>t), ©)

where J, (m) - Bessel function, m=ex\f .
Equation (4) describe changing of “particle’ phasex , at
which many of waves acts on. Amplitudes of those waves
W, xJ, (m) are increasing with growing of harmonic's
number and in region n~m have a loca maximum.
Amplitudes of harmonics with number n>m are
exponentialy decrease [1].
3. (m) = (2/n)" Ai(2) : (2/n)" (W 2vp Y2)e.
Thus, it is possible to expect, that radiation field will
contain harmonics with frequencies up tonw,, .

Radiation intensity into space angle unit do with
frequency w =nw,, isequal to[2]:

“Rédo, ®)

[ o
whereH, =i& A, U, and Fourier component of vector
potential defined by

dl, == M,
2p

Ry

where T =2p /w,, , F(t) , \'/(t) - particle's radius-vector

A = ew%}y&t) expin(w,t - KF (1)) et , (6)

and velocity, k - wave vector, R, - distance to point of

observation. In the common case, it isn't seemed possible
to get the analytical dependencies of spectral density from
parameters of external fields.

3. RADIATION SPECTRUM OF PARTICLE
MOVING IN PERIODIC POTENTIAL
The investigation of spectral characteristic of fields
radiated by charged particle moving in external electrica
field and in the field of potential, was carried out by the
numerical solution of equations (3) and substitution of its
solutionsinto (5) and (6).
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For a case of nonrelativistic motion the amplitude of
an external dectrical field is equal to Eec=10" V/cm, for
relativistic - Ee=10° V/cm. Frequency of the externd
electromagnetic field was fixed.

Investigation was carried out for two vaue of
potential period d=0.0025-A¢¢ and d=0.00125-Ae; with
Aee=10cm. Value of potentiad amplitude varied

within g =(0- 0.125)E,k* . Initiad conditions for
particles were equal toz (t =0)=z,; Z(t =0)=0. For
that the right-hand of (3) had been presented as
e>cos(V\{<1>t ) :

Calculation accuracy was controlled with the help of
motion integrals

= Wo{ee) - o)) e oot )

| :%2+\/\/’30é p(t )sin(z (t))et +eé p(t )cos(Wk’t )dt ,

r

their absolutevalueswasleﬁsthan“ | <10,

In absence of the periodic potentiad influence

W =0.0 the equation (3) has a smple analytical solution.

Motion of the particle is periodic with frequencyw =w,
and spectrum of its speed and spectrum of the radiation
field arelinear.

Presence of space-periodic potentia with amplitude

of W =0025% (d=000254,,) (Fig.l) qualitatively

changes the picture of charged particle motion and
radiation. At phase plane the trgectory is not strictly
periodic curve (Fig 1,a), because particle motion is
determined by acting, both external dectrical field, and
periodic potentia. In velocity spectrum (Fig. 1,b) the base
frequency dominates. Components on its harmonics occur
under acting of the periodic potential.
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Fig.1. a) Phase space; b) Spectrum of velocity;,
¢) Influence of potential on particle trajectory;
d) Spectrum of radiated field

For the analysis of influence of the periodic potential
on particle motion it is convenient to introduce
variable b (t)=Db()- eW sint) . It is visble, that
under acting of the potentia the particle performs high-
frequency oscillations (Fig. 1,c), which results to
appearance of harmonics in the spectrum of veocity. At
that in power spectrum of radiated field (Fig.1,d) aso
appear the components on harmonics of externa field
with relative maximum on harmonic number n=11, that in
order of magnitude is in very good accord with position

of relative maximum n ~ m=e X\ »12.
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With growing of amplitude of periodic potential
W =0.075¢ ( d=0.00254 _, ) (Fig2) occurs the

growing of harmonics amplitudes in spectrum of velocity
and its enriching at intermediate frequencies. Amplitudes
of high-frequency oscillations grow up & the influence of
periodic potential. Amplitudes of al harmonics in
spectrum of radiated field are growing up too. Kind of the
spectrum practically hasn't changes.
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Fig.2. a) Phase space; b) Spectrum of velocity;
¢) Influence of potential on particle trajectory;
d) Spectrum of radiated field

For potential amplitude W =0.125%

(d=0.00254 ., ) (Fig.3) occur gqualitative changes of

phase plane — the particle motion isn’t localized in limited
region of space and represented series of oscillations near
locally stabled state. Spectrum of particle velocity and,
consequently, spectrum of radiated field lot enriching at
all of intermediate frequencies.
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Fig.3. a) Phase space; b) Spectrum of velocity;
¢) Influence of potential on particle trajectory;
d) Spectrum of radiated field
Further growing of potential amplitude leads to
appearance of non-regular motion of particle hence the
spectrum of radiated field a so becomes non-regular.
For a potential with period d =1.2540°% _, the
number of harmonics, both in the spectrum of velocity
and radiated field, are proportional to parameter m.

Sp

0.03 o1
0.01 =3
A 110
-0.01 L16° 10
-0.03 s " I I YA
50 40 30 20 10 ¢ M0 TST0 93 17 21 efoe
a b
4 [
10 B
6 0-13
= 2 1-10
e , i 11 ] | [T
= 110 T T I
110" 4
= 2 = 5 9 13 17 23@/o.
c d

Fig.4. a) Phase space; b) Spectrum of vel ocity;
¢) Influence of potential on particle trajectory;
d) Spectrum of radiated fild



At amplitudes of potential W2 =0.07>e (Fig.4) the determinant of this agebraic system represents a

motion of particle is quasiregular. Spectrum of velocity ~ diSPersion equation. We snall keep only  resonant
and spectrum of radiated field have line structure. The ~Members w»nw,, . In these conditions dispersion
local maximum of spectrum fall on harmonics with  equation takes on enough simple form:

number N, :223, that is in very good accord with B W I W 1 W an (n)oo
valuem=e X\ » 25. 91 Lt = =0,(9)
WE W W AW, Enwi, g3
1
. with increment Imd -%W‘)(J (Mww, )1/3
b T
o e 20 ¢ "M s L111 ‘1|3 1|5 u:/mm CONCLUSIONS
a b The presence of space-periodic potentia even small
i \ st F amplitude leads to generation of high-number harmonics
e 05| d of radiated field. At that, loca maximum in spectrum of
Lf 3 radiation lays at high-number harmonics of externd
o1 03 05 o7

09t "0 20 40 60 80 100 120 e electric field. Number n_, of harmonic, at which local

d maximum of radiation lays, is in accord with analytical
Fig.5. a) Phase space; b) Spectrumof velocity; ) Particle  results very well. Radiation frequency in its maximum
velocity as time function; d) Spectrumof radiated field w_. =n_w_ is sufficiently higher than external field

For the case of relativistic motion the amplitude  frequency (n,, >>1). Intensity of harmonic radiation at
Eec=10° V/icm (W =0.15e, d=0.0025Ae) typical is local maximum is high enough.
motion of particle with aimost constant velocity, close to While, that for the case of nonrdativistic oscillator
velocity of light (Fig. 5), practically during al half  discussed in [3] the intensity of n-th harmonic radiation
period of the extenal eectricd field. Spectrum of g hroportional b2, so intensity of harmonic radiation
velocity has line nature. Spectrum of radiation has a
maximum on the harmonics with frequency Wmw=g’/ 2
that completely correspondsto analytical result [3].

4. DISPERSION EQUATION
For obtaining of dispersion equation it is necessary to .
solve sdf-consstent systems, which implies of the 1 M.Abranovitz,  A.Stegun. ~ Handbook ~ of

Maxwell equations for field and equations of charged mathematical functions. Pergamon Press, 1968,

particles mation in exited fields. In linear approximation p.1054. o )
we chooseafleld of such type: 2. L.D.Landau, I.M.Lifshits. Field theory. Moscow,

1971, p.424.
E Ree exp(i(kx +k z) exp(- iwt) . 3. A.A.Sokolov, |.M.Ternov. Reativistic electron.

Moscow, 1974, p. 392.

with numbers equal to appropriate numbers of harmonics
at loca maximum (in our casen~n_, »11) will be

negligible small.
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Executing necessary transformations, we'll obtain a
set of linear dgebraic equations. The equality to zero of a

3BOJIIOIUSA CITIEKTPA OCHUJIJIATOPA B MTEPUOANYECKOM HNOTEHIHUAJIE
B.A. Byu, A.M. Ezopoe, B.H. Mapexa, A.Il. Toncmonyscckuii

AHATUTHYECKHA W YUCICHHO HCCiIca0BaHa CIICKTPAJIbHAA MOIIHOCTD U3JTYUCHUS OCLHUIIIIATOPA, KOTOpI:IfI JABHXXCTCA B
NEPUOANICCKU-HEOAHOPOAHOM NOTCHIHAJIC. HOKaBaHO, YTO CHCKTP HCPCIATUBUCTCKOTIO OCHUIIIATOPAa MOXKET UMCTH
MAaKCHUMYM Ha BBICOKHMX HOMEpPAX TapMOHHUK OCHOBHOM YaCTOTEL. Haﬁ[{eHLI AMIUITUTYAbl MMOTCHOHATIA, ITPU KOTOPBIX
JABWKCHUC OCHWULIATOPA CTAHOBUTCS HEPCTYJISAPHBIM. HOKaSaHO, YTO B PCIATUBUCTCKOM CJIydac MaJjasd BCIMYMHA
MOTCHIAJIa NPAKTUYCCKU HE BJIMACT HAa XapPAKTEP CHCKTPA. HOKaSaHO, YTO C YMCHBIICHUEM II€PUOAd HCOAHOPOAHOCTH
MAaKCUMYM CIHCKTpa TMCPCABUTACTCA B KOPOTKOBOJIHOBYIO obmacte. B nmHelHOM HpI/I6J'H/I)K€HI/II/I MOJIY4CHO
JUCIICPCUOHHOC YpaBHCHUC B036y)KZ[eHI/I$I KoJieOaHuil aHcaMmOJIeM OCHUJIIIATOPOB Ha YaCTOTC, COOTBCTCTByIOHIeﬁ
MAaKCUMYMY CIICKTPA U3JTYYCHUA UHAUBUAYAJTIbHOTI'O OCHHUILIAATOPA.

EBOJIIOIISI CIIEKTPA OCHUJISITOPA Y ITIEPIOAUYHOMY HNOTEHIIAJII
B.O. byy, O.M. €z20pos, B.1. Mapexa, O.11. Toncmonysccokuii

AHaNITHYHO W YHCENBHO OCHTIHKCHA CIIEKTPabHA IMOTYXHICTh BHIIPOMIHIOBAHHS OCHWJIATOpA, IO PYXA€ETHCS B
MIePiOIMIHO-HEOHOPIMHOMY TOoTeHmiami. [lokazaHo, MO0 CHEKTP HEPENATHUBICTCHKOTO OCIIIATOpAa MOXE MaTh
MaKCHMyM Ha BHCOKHX HOMEpaxX TapMOHIK OCHOBHOI YaCTOTH. 3HAWICHO aMIUITYId MOTCHIATy, MPH SKUX PyX
OCHIIATOPA CTAa€ HEPETYIPHUM. B pelnsaTHBICTCRKOMY BUIIAIKY MaJia BEIMYHMHA TIOTCHITIATy IPAKTHYHO HE BILUTUBAE HA
xapakrep crekrpa. JJocmiKkeHo 3aIeKHICTh BUCOKOYACTOTHOI O0JIACTi CIIEKTpa BiJl BEIMYHHU TIEPioy HEOTHOPITHOCTI
MOTEeHINary. 31 3MEHIIEHHAM Iepiofy HEOTHOPITHOCTI MAaKCHMyM CIIEKTpa IIePEeCyYBaeThCS B KOPOTKOXBHIIHOBY
obnacte. Y niHIHHOMY HAaOMMKEHHI OTpHMaHe AHcHepciiiHe piBHAHHS 30y/DKEHHS KOJIMBAaHb aHCAaMOJIEM OCIMIIATOPIB
HA YacTOTi, IO Bi/ITOBi/Ta€ MAKCHMYMY CIIEKTpa BUIPOMiHIOBAHHS 1HIWBIIyaJIFHOTO OCITIIIATOPA.
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