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Plane monochromatic electromagnetic wave scattering by charged particles is investigated theoretically taking into
account the influence of scattered incoherent electromagnetic radiation on particles motion. The spread in the particles-
velocity due to interaction of particles with each other via the fields of spontaneous incoherent radiation is shown to

appear in the process of scattering of incident wave.
PACS: 52.25.Gj; 52.50.Jm; 52.59.Rz; 41.60.Cr

1. INTRODUCTION

Investigation of processes of electromagnetic waves
interaction with charged particles is of considerable
interest for many applications of plasma physics and
charged particles beams, such as heating of plasma by the
externa fields [1], stability of plasma in the externa
electromagnetic  fields [2], its diagnostics [3],
accelerations of electrons in the fields of laser radiation
[4], increase of frequency in plasma [5]. The scattering of
external electromagnetic waves by the charged particlesis
also concerned with generation of narrow-band ultrashort
wavelength radiation at motion of relativistic electron
beams in the externa periodic fields [6]. The peculiar
significance for these applications has finding out effects
of radiation reaction on particles motion.

In the given paper the results of theoretical research of
the plane monochromatic electromagnetic wave Thomson
scattering process by charged particles taking into account
the influence of scattering radiation on particles motion
are presented, the incoherent scattering of external wave
by the charged particles being discussed.

The charged particles motion in the tota
electromagnetic field in the limit case of a small value of
unit-less wave strength parameter is considered. The
spread in particles momentum is shown to appearsin the
process of incident wave scattering. The dependences of a
mean-square value of particles longitudinal velocity on
time are found and investigated by anayticaly and
numeral methods.

2. FORMULATION OF THE PROBLEM

Let us consider the ensemble of the identical charged
particles with the charge of g, mass of m and
homogeneous average density no, moving in a field of a
plane monochromatic electromagnetic wave (EMW)

E®) =E, cosfwt - kr), )
where E, is the amplitude of the wave electric field; w, k
areits frequency and wave vector.

Assume that the Ey and k vectors are directed along
axes 0X and 0Z accordingly Cartesian coordinates.

Let us find the spread in the longitudinal velocity of
particles, due to the interaction of particles via
electromagnetic fields, produced by these particles at
moation in the external field (1). Let us call the direction
parallel to that of scattered wave propagation a
longitudinal one (viz. along the OZ axis).

In order to find solution in explicit analytical form let
us consider a=eE;/mcw parameter as a small one

which characterises a relative size of transverse
oscillatory velocity of particle in the external field.

Solution of a problem will be searched by the
following method: let us consider the ensemble of charges
as large number of the individua charged particles.
Having found the field produced by the individual
charged particle, moving in the external field, in the limit
case of a small value of a parameter let us find the total
longitudina force, acting on the individual (test) particle,
the mean-square longitudinal velocity being expressed via
the ensemble average of the product of pair interaction
forces of particles.

3. RESULTS AND DISCUSSION

In the external field the charged particles oscillate in
the direction parallel to the E, vector. The equations for
coordinate and veocity of particles can be written as
follows:

ri (t) =loi - € (Ca/W)COS(Wt - kZ)+eZDi (t)-
v, (t)=e casin(nt - kz)+e, v,,
where o, ={X, Y42} isthe coordinate of i-th particle
in the initia moment of time t, (le& t=0),
z(t)=z,; +Di(t) be the longitudinal displacement of
particle trgjectory relative to theinitial position.

Let us express dectric and magnetic fields produced
by the individua particle via Lienard-Wiechert potentials
[7]. In the nonrelativistically motion of particles and small
a value the expression for the electric field, produced by
thei-th particlein r coordinateinttimeis:
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WhereRi = ex(x- Xoi )+ ey(y' yoi)+ ez[z- Z (t()] '
j o =wt- k[R - Zi(t)]'

A total field in the observation point of r in thetimet
will be determined by chargesinitia coordinates of which
satisfy condition:
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Let us consider the motion of some individua (test)
particle both in thefield (1) and in the fields, produced by
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all other particles. Equations of longitudinal motion of
such particle (let it be the i-th particle) in these fields can
be written as follows:

P e 0d=8 FOR Oex] @

FZ(S)(r.t; Xs) = e} Ezs(r,t)+%[vHS(r,t)]z g. )
1

where r; , p; are the position and momentum of the i-th
particle at time t; Es(r,t), Hs(r,t) are the strength of
electric and magnetic fields, produced by the s-th particle
at timetinr coordinate.

Let's the considered system consists of N charged
particles the coordinate and momentum of which at the
initial time are random vaues. We introduce the
distribution function of system states Dy(Xoy, - -, Xon; to) &
time t,. This function is normalized as:
®N(X01,..., XoN; to)dXoj_...dXON:l, where )C{ r, p},
xos=X{0). By integrating of Eq. (4) we can obtain the
deviation of longitudinal momentum from the mean value
for test particle

= tc‘ple[ri (td, tddte, (6)

and expression for rate of change of mean-square spread
in the longitudinal momentum of particles

dt( F)= deF [, (9. tdar [, (
where Dp,i=p;-<p;>,dF, = F,
indicate average val ues,

(F(r.t) = C‘f(l)[r,t; X{t: %0)] 2 (%o )ao |

(%) = N AP (X0r X1 Xon 1 o )X By
f, isthe single-particle distribution function.

The right-hand side of Eq. (7) is founded in neglecting
of influence of fields, produced by particles on its motion.
Thus in the right-hand side of Eq.(7) r; (t) can be
replaced by unperturbed trajectory r0(t)=r, (t;D=0) of
particle in the external field (1). Taking into account that
particles are identica and neglecting initial correlation
between them Eq. (7) can be expressed as

<jt( )> 2G5S )

z [Xi ' s ' os] z [Xi t@'xs(t¢xos)]
where x%(t) = {ri(o) (t).t}

Analytical expression for the force, acting on an
individual particle in the electromagnetic field, produced
by the other particle will be derived by substituting
expression for field (2) in Eq. (5):

Jt)ete, (7)

- (F,), angular brackets
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Neglecting initial momentum spread the Eq. (8) for
rate of change of root mean square longitudinal particles
momentum is:

(L))
=

wherey =r,-r,,

i<( )> 4pn, (ak) Omde o1 JFdr,, (10)
dt 0 VO( )
where V, is the integration region determined by
condition (3).

Having integrated Eq. (10) taking into account the fact
that particles are at some finite distance one from octher,
we find:

<(Dbz)2>:s§+sé, (11

where s =0 a2(Nwt)?wt , \/Er‘) N%wt
Sr7y as (Nwtfwt s o 33
N=nJ2% r,=q*/mc?, b, =v,/c.

As a minimum distance between particles the value of
in =N Y% was taken.

Thefirst term in right hand side Eq. (11), that depends
on parameter a, is the longitudina particle veocity
spread, due to interaction of particles via the
€lectromagnetic waves. The second term in Eq. (11), that
is not dependent on parameter a, describes the spread, due
to the coulomb interaction of particles.

On the wt >> N]/3/(p2K4) times the particle velocity
spread will be determined by interaction of particles with

each other via electromagnetic waves. The expression for
the momentum spread in this case may be presented as

follows:
[(on. ]N Let)
eff
= Nwt/2p?, aokwt/3 is the energy
2

losses of an individual dwargeon radiation, e, =mc”.

Now let us consider the EMW scattering on the
clusters of the charged particles, having a form of a
circular cylinder with the height of I, and radius of r,. Let
the wave vector k be paralel to the axis of a cylinder
(cluster). The spread in the longitudinal particle vel ocity
will be described by Eq. (11) for particles present in the
initil moment of time in the center of cluster on the
cylinder axis and at the distance of 1,/2 from its base.
Thus the first term in this equation, corresponding to the
radiative interaction, is.

r

(12)

where N

Y2

e ou
SR—Sg):r—OagtéENl—bF%ifj , (13)
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where F (X)=x arcctg(x).

When Eq. (13) was derived a considered test particle
was assumed to be located in the influence region of
fields of al other particles of the cluster. Eq. (13) shows,
that for the sufficiently wide charged particles cluster
(2rp>>1p) longitudinal velocity spread due to the radiative
interaction of particles will be proportional to the root
square from the number of particles in the effective
volumeVy, =pl 2, .

The dynamics of the change of particles longitudinal
vel ocity spread was investigated by particle smulation of
the EMW scattering process on the charged particles
cluster. The cluster has the form of a cylinder, whose axis
coincides with the direction of external wave propagation.
The radius of acluster is equal to 5l , and its length equals
101 . A cluster consists of 5000 particles, a,=0.7,
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| =10um. The motion of particles was described by
equations (4), (5), (9).

The dependence on the dimensonless time t=witr
normalized value of the spread in the longitudinal velocity
of N; particles, located in the center of a cluster at the
initial time t=0, is shown in the figure, where
r =2a,(pryl,N/3)"* /1 . Namely the initial coordinates
of these particles (test particles) were in the region,
limited by the surface of a cylinder with the radius of
r;=0.15r, and the height of 1,=0.4l, . Axes of cylinders

and planes of symmetry (a plane perpendicular to the axis
of acylinder and dividing itsin two) coincide.
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In this figure the curve 1 corresponds to the particle
simulation, and curve 2 - the dependence of the
longitudinal velocity spread, determined by Eq. (11), (13).

_ _ N;

s2=b2- (bj)z A:NiéA - summation is
1i=1

carried on over all test particles, N, is their total number.

Here

The figure shows that the spread in veocity is
proportional to the t on the initial stage of scattering. The
results of numeral smulation agree with the analytical
estimations by Egs. (11), (13). On the times t>5 the rate
of changein longitudinal velocity spread decreases.

Thus, the EMW scattering on the charged particles
leads to the increase of the velocity spread of particles.
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HAT'PEB 3APSI’KEHHBIX YACTHUIL ITPU TOMCOHOBCKOM PACCESIHUN
MOHOXPOMATHYECKOM DJEKTPOMATHUTHOM BOJIHBI

B.B. Oznueenko

TCOpeTI/I‘ICCKI/I HCCICO0BAHO PACCEAHUEC IUIOCKOM MOHOXpOMaTH‘IeCKOﬁ BHCKTPOMaFHI/ITHOI\/‘I BOJIHBI 3apsHKECHHBIMA
YJacTULIaMHU C YYCTOM BIIMSHHA PACCEIHHOTIO HEKOTCPEHTHOI'O DJICKTPOMArHUTHOTO M3ITYYCHHA Ha NBMXKCHHUE YacCTHIL.
HOKaSaHO, YTO B IIPOILIECCE pacCCEAHUA Ha,ualomeﬁ BOJIHBI ITOABJIACTCA pa36poc 110 UMITyJIbCaM 4YaCTHII, O6y0J’IOBJICHHBII71
ux BSaPIMOI[CfICTBPICM ApYyT € APYTroM 4€PE3 IOJIA CTIOHTAHHOTO HEKOTCPEHTHOT'O U3ITYUCHHU .

HAT'PIBAHHSI 3APSJUKEHUX YACTUHOK ITPM TOMCOHIBCBKOMY PO3CISIHHI
MOHOXPOMATHUYHOI EJJEKTPOMATHITHOI XBHJII

B.B. Oznisenko

TeopeTndHO HOCHIIKEHO PO3CISIHHA —IDIOCKOI

MOHOXPOMAaTHUYHOI

€JIeKTPOMATHITHOI XBWJII  3apsKCHUMH

YACTHHKAMHM 3 YpPaxyBaHHSM BIUIMBY PO3CISHOIO HEKOTEPEHTHOTO EJIEKTPOMATHITHOrO BHUIPOMIHIOBAHHS Ha PyX
gacTHHOK. [loka3aHo, IO B MpOIECi PO3CITHHS MMAHA0d0i XBHJI 3'ABISETHCS PO3KHUI IO IMITYIBCaxX YaCTHHOK,
00YMOBJICHUIT TX B3a€MOJIIEI0 OJ(HA 3 APYTOI0 YepPe3 MOJIsl CIIOHTAHHOI'O HEKOTEPEHTHOT O BUIIPOMIHIOBAHHSI.
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