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MATHEMATICAL MODELING OF GAS FLOW IN PLASMA TORCH
VORTEX CHAMBER
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Mathematical model of moving gas in vortex chamber (inter-electrode gas supply insert) of plasma torch channel
was developed. Effect of moving electric arc on the motion of gas is considered. Software for solving problems of

three dimensional non-ideal gas dynamics in complex areas was developed.
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1. INTRODUCTION

Nowadays several important problems of environ-
mental control (ecology problems) take place. These
include waste processing (municipal, medical, radioac-
tive waste), efficient burning of low-calorific coal, some
plasma-chemical processes (decomposition of hydrogen
sulphide, gasification of coal and heavy hydrocarbons).
These processes require to heat up to 3000...5000°C for
waste processing and up to 10000...12000°C for plas-
ma-chemical processing. These problems can be solved
by the using of plasma technology. The direct current
arc plasma torch is the more applicable source of heat
gas in low temperature plasma technologies.

The plasma torch with tangential gas blowing is
wide used because of its design simplicity and stability
of operating parameters. There are two main parameters
to control plasma torch power these are arc the current
and the gas flow rate. To provide the wide range of
plasma torch working parameters it is necessary to mi-
nimize the turbulization of gas flow in plasma torch
channel.

Numerical experiment of physical processes (gas
flow, gas heating by electrical arc) in plasma torch
channel gas flow enables us to determine the correlation
of plasma torch parameters such as geometry of plasma
torch channel, working arc current and working gas
flow rate at the stage of plasma torch design.

The most important factor that affects on the gas
flow in the plasma torch channel and on the working
power of plasma torch is the electric arc. The parame-
ters of the arc-heated plasma are described by compli-
cated structure of the gas dynamics, heat transfer and
electromagnetic phenomena. Thus, it is necessary to
solve the whole system of gas dynamic equations and
the electrodynamics equations (Maxwell equations).

We try to find the solution of the whole system of
non-ideal compressible magneto hydrodynamics equa-
tions (MHD) in complex 3D areas.

2. PHYSICAL FORMULATION OF THE
PROBLEM

The gas is injected tangentially through inter-
electrode gas supply insert (the insert between cathode
and anode parts of plasma torch cannel) of the plasma
torch (Fig.1). The gas flow is supplied in vortex cham-
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ber (inter-electrode insert) and it begins the rotational
movement along the plasma torch channel. After some
time the electric voltage is turned on and the electric arc
appears. The electric arc heats the gas up to high tem-
perature.

Fig.1. Plasma torch channel

We shall consider two types of tangential gas supply
in vortex chamber: six cylindrical holes and three rec-
tangular slots. We investigate the relation between tem-
perature, pressure, arc voltage and the external current.

First, we solve non-ideal gas dynamic equation
(without magnetic field). The problem is solved in the
sector area (Fig.2). The solution is found up to the mo-
ment when the current is turned on. We suppose that
this moment is known. The gas is assumed viscous, but
not heat-conducting [1-3].

Fig.2. Sector area

After the current is on we will define the zone with
the electric arc. The initial value of magnetic intensity is
in this area. Then the whole system of non-ideal MHD
is solved. The initial conditions for the system are taken
from the solution of previous problem. The problem is
solved in the whole area (Fig.3). The gas is now as-
sumed viscous and heat-conducting.
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Fig.3. Whole area
3. NOTATION

Throughout the paper the following notation is used
tis the time; r = (x, y, z) is the point of the area; o is
the density; V = (Vr,V(p,VZ) is the gas velocity of the
cylindrical coordinate system (r,@,z); V =(u, v, w)

is the gas velocity of the rectangular coordinate system;
2

e = pe+ p— 1is the volume density of the total en-
2

ergy, where ¢ is the mass density of the specific inter-
nal energy; p is the pressure; 7 is the temperature;

R is the universal gas constant; D is the area; y is the

index of the adiabat; S the boundary of the area D ; a
the velocity of sound; I is the identity tensor; o is the
stress tensor; 77 is the coefficient of dynamic viscosity;

P, 1s the initial density; V, is the boundary speed
(inflow speed); T;, is the initial temperature; H is the

magnetic field strength; v is the magnetic viscosity;
q is the heat-flux vector; A is the coefficient of heat

conduct.

4. MATHEMATICAL PROBLEM
FORMULATION

4.1. THE SYSTEM OF EQUATIONS BEFORE
THE CURRENT IS TURNED ON

The base system of gas dynamic equations is solved.
There are continuity equation, momentum equation and
energy equation.

op .

—+div(pV) =0, (D

ot

opV )

a—+dlv(pV®V+pl—0')=0, 2)

t

oe .

a— +div((e+ p)V-0oV)=0. 3)
t

Stress tensor has the following components is
o= {o-l-j} [4, 5]:

N, Ni g
i .
8xj 8xl- 3 8xl

The state equations are:

oy =1 (4)
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p=pRT, 6 =——. %)

y—1
The initial conditions are:
Plig = Po Vz:o =0, Tt:O =Ty
The boundary conditions are:
0 gas inflow: p=p, pV=pV,, p=p,
T =T, on S1 ;
0 adherence condition: V =0 on Sz;
gas outflow conditions on S3 ;
periodicity condition:
p(I‘, (01 +¢0’Z) = P(r’ (01:2):
Vn(ra q)l +¢O’Z) = Vn(rs ¢1:Z)9
Vr(ra (01+(0072):Vr(r7 ¢152)7 (6)
Vz(rs (ﬂl + ¢09 Z) = VZ (r’ wls Z),
e(ra ¢’1 + ¢05 Z) = e(ra (01az),
where ¢, is the sector angle (in our case

p,=n/3,2r/3), ¢ is the angle between bottom
and top faces, V, (in our case V¢) is normal velocity

component, V, is radial velocity component.

4.2. THE SYSTEM OF EQUATIONS AFTER THE
CURRENT IS TURNED ON

After the current is on we define the zone with the
electric arc. The system of the solved is the following:

op ..

—+div(pV) =0, @)

ot

opV . 1

“— +div(pV ®V + pl —0) = —[rotH, H], (8)
Ot 4z

P 1
% 4 divie+ p)V —oV +q) = — rotH -[H, V], 9)
Ot 4

cH
a— = rot[V,H]—rot(vmrotH), (10)

t
divH = 0. (11)
Stress tensor components o = {al.j} are taken from

(G
Heat-flux vector is [4, 5]:

q=—-A-gradT. (12)

The system (7)-(11) is supplemented with the state
equations (5).

The initial conditions are taken from the solution of
the last problem described in 4.1.

The boundary conditions are the same.

5. THE MESH

In the area of computation the tetrahedron is con-
structed with account of period conditions. The mesh is
refined especially in the zone of the inflow (Fig.4).
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Fig.4. Tetrahedron meshing. Sector area.
View near inflow area. H max = 0.1

After we have the sector mesh we can get the whole
area mesh using torsion (Fig.5).

Fig.5. Tetrahedron meshing. Whole area.
View near inflow area. H max = 0.1

6. NUMERICAL METHOD

6.1. DESCRIBING SOFTWARE

We use our previously developed [2] software to
solve the problem of non-ideal gas dynamics in the
complicated 3D areas. The software is developed using
FORTRAN language. We also plan to add the electro-
dynamics module (10)-(11). Data input is mesh parame-
ters and gas parameters.

The software is based on physical process separa-
tion. The flux solver of ideal gas dynamic is HLLC
[5,6]. The flux solver of non-ideal gas component is
taken from [1,7-9]. The numerical procedures of the
software exploit the idea of physical process separation.

6.2. PHYSICAL PROCESS SEPARATION

We use physical process separation procedure to ob-
tain the approximation for the non-hyperbolic parts of
system (7)-(11) [10-11].

The problem is separated into two parts [12-16]:
Navier-Stokes equations and electrodynamics part (10),
(11).

The algorithm of finding solution at the next time
step is:

e solve ideal gas dynamics [6];

e solve the parabolic system with initial conditions

from the previous time step;

o find the solution of (10), (11) (V is known);

o find the gas parameters ( H is known).

Let’s write the basic system in operation form.
U, + A(U) =F(U,H),
H, = G(U,H),
U — vector of conservative variables; A — system op-
erator; F — right part of the gas dynamic equations; G —

right part of the Maxwell equations.
We can write A as:

A=A +A,
where A, - hyperbolic operator, A — parabolic opera-
tor.
The solution of (7)-(11) at (¢,,¢, +7) is found by

solving the four problems:

1/4 1/4 1/4
U T U(,), U +A (U) =0, (13)
2/4 1/4 2/4 1/4
U o U@) U =AU, (14)
3/4 3/4 24 1p3/4
H LT H(z)), H " =G(U" ,H ), (15)
4/4 2/4 4/4 2/4 yy3/4
U . =U""(¢), U =FU ,H"), (16)
U, +7)=U"(2), (17)
where ¢, t, are the intermediate time steps at
(1, 1, +7).
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Cmamowsa nocmynuia 8 pedaxyuio 15.05.2008 2.

MATEMATHYECKOE MOJEJIMPOBAHUE TEUEHUSA I'A3A
B ®OPCYHKE U B OBJIACTU AHOJIA KAHAJIA IIVTASMATPOHA

A.E. Bymuipee, M.I1. I'ananun, A.B. Ilepecnasues

[TocTpoena mareMaTHdeckasi MOAENb JBIDKCHHUS Ta3za B (OpPCyHKE (MEXKIJIEKTPOIHON BCTaBKE) W B 00yacTu
aHo/la KaHajla IUIa3MaTpoHA. MoOJeNlb yYMTHIBACT BIIMSHUE DJIEKTPHUYECKOW Iyr'M Ha TeueHHe rasza. Paszpaboran
TIPOTPAMMHBIA KOMIUIEKC JUIS pelIeHHUs 3aJad TPEXMEPHOW HEeHUIeadbHOM ra30Boi JHHAMHUKHU B O0NACTIX CIOKHON

TEOMETPUIECKOH (DOPMBIL.

MATEMATHUYHE MOJIEJTIOBAHHSA TEUIi TA3Y
Y ®OPCYHII I B OBJIACTI AHOJA KAHAJIY IIVIASMATPOHA
A.€. Bymupes, M.I1. I'ananin, A.B. Ilepecnasues

[ToOynoBano MaTeMaTHYHY MOJIEINb PyXy ra3y y (opcyHui (MDXXEIEKTpOAHIH BcTaBIi) 1 B 00J1acTi aHO/IA KaHAITY
1a3MaTpoHa. Moienb BpaXxoBye BIUIHB €IEKTPUIHOI AYTH Ha Tedito ra3y. Po3pobieHo mporpaMHuii KOMITIEKC IS
piIIeHHs 3aBAaHb TPUBUMIPHOI HeilearbHOI Ta30BOi TUHAMIKH B OOJIACTSIX CKJIAHOI T€OMETPHUIHOI (POpMHU.
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