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Magnetohydrodynamic (MHD) stability of finite-beta collisionless plasmas with anisotropic pressureis investigated.
For simplicity we analyze Z-pinch-like magnetic configuration with internal conducting rod at the axis. This
configuration corresponds to cylindrical model of dipole magnetic configuration, has important features inherent in
magnetic systems with high field-line curvature, and is very convenient for aninitia theoretical analysis. Axisymmetric
flute-like modes are analyzed in the frame of one fluid anisotropic magnetohydrodynamics of Chew-Goldberger-Low
(CGL). The stahility criterion of flute-like modes and the corresponding families of marginally-stable (MS) pressure
profiles are calculated and analyzed. Contrary to the flute-like modes, stability of non-axisymmetric Alfven modes
strongly depends on redistribution of plasma energy along the field-lines. Therefore, perturbations of longitudina and
transversal plasma pressures are cal culated from kinetic equation using path-integral method.
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1. INTRODUCTION

We consider the stability of static equilibrium of
axisymmetric finites (B = 2p/B?) plasma column confined
by pure azimutha magnetiic field (Z-pinch). All
perturbations of plasma parameters and magnetic fields in
various one-fluid MHD-like plasma models can be
described in terms of plasma displacement & Due to axial
symmetry the displacement can be expanded into Fourier
seriesé =Y &(r, 2 exp(imd), where each harmonic can be
analyzed independently. Traditional ideal MHD-model
with isotropic pressure (TMHD) predicts two classes of
the most dangerous perturbations in such geometry [1, 2]:
flute-like modes, which don’t depend on 8 (m = 0), and
incompressible Alfven modes m> 1. Flute-like instability
can develop at arbitrarily small B, while Alfven modes
can become unstable and dominate over flute-like ones
only when B is sufficiently large and exceeds a critica
value B~ 1. In this paper we analyze modifications of the
above instabilities in more advanced and realistic MHD-
like plasma models.

2. STABILITY OF FLUTE-LIKE MODES

Plasma uniformity along magnetic fidd lines and the
absence of longitudinal particle and energy fluxes in this
magnetic configuration guarantee that axisymmetric
motions of collisionl ess anisotropic plasma can be correctly
described by Chew-Goldberger-Low (CGL)
magnetohydrodynamics [3]. In particular, the stability of
flute-like modesin the CGL-modd hasto coincide with the
result of semi-kinetic analysis by Kruska-Oberman [4].

Unlike TMHD, CGL’s pressure is diagonal tensor:
Pk =pwix + (P - pybibe ; b = B/B. The pressure
components p., pj satisfy the conditions of conservation
of adiabats s. = p. /pB, s| = pj B%p® aong fluid
trgjectories. i.e. st, 5| are the Lagrangian invariants [3].
This fact enables us to find variations of pressures
dpLoeL(€) , 0 P| co(¢ ) under plasma displacement &
from arbitrary dynamica state [5]. These variations are
used to derive energy principle for static equilibria, that
guarantee the absence of linear instabilities when
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52W(&) >0 for any & % W(&) can be found by means of
direct variation of potential energy [6].
Axial symmetry leads to one-dimensional equilibrium:

pL& (pr—pp/r+B (rB)¢r=0. 1)

Here and below prime denotes the radial derivative. Now
criterion of stability of flute-like modes can be written:

(pL+py)¢+ 3 pL+4 py— (1+Bo) * (Br + By /2)°B?=
(1+po) " (B> p))(AsL)¢+ B (7»33||)¢I‘ >0, 2

where X is the number of particles in specific flux-tube
volume U = r/B. Similar to st and s A is Lagrangean
invariant in axisymmetric plasmamotions.

Margin of stability is determined by equations (1) and
(2), but we need an additional oneto close system.

Rather often it is assumed that plasma equilibrium is
isotropic one p. = pj = p. In this case

p = const r—"?[1 + (a/r)¥?]°. ©)
Inlow p casea— 0
p-r-"%, @

and the pressure profile has the more steep decrease, than
in TMHD y = 5/3 (p - r*3). Thisis in accordance with
comparison theorem [7, p.12.4.].

Marginaly-stabile (MS) pressure profile for flute-like
modes in TMHD corresponds to homogeneity of
equilibrium entropy function S [1,2]. Computer
simulations [2] have shown that turbulence tends to
maintain the MS-state S = const with characteristic
relaxation time t,. In our case we should expect that the
similar relaxation will lead to conditions A = congt,
st =congt, and s; = const. As a result, we obtain the
following turbulent relaxed pressure profiles:

I=lod(cNm) , pr=[rol 2/ 2r (r+10)® 1[1-(ralr)] 2,
Py =[21 21”1 (r+ 1) 1[1-(ra/r)’], (5)
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where |y — total current in inner conductor and plasma
column, ro = 2 pu 1/B? =congt, 1y = pyr¥/ 2B I =const . At
low B

T TR (6)

Pressure profiles, corresponding to both cases and to
TMHD, in double logarithmic scae are shown at Fig. 1.
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Fig.1. Characteristic pressure profilesin double
logarithmic scale. Solid line - case of isotropization
pL = p| = p, upper and lower dashed lines - p.and
p| respectively, dotted line - TMHD

The characteristic time of turbulent relaxation can be
comparable with the time of pressure isotropization. In
this case the isotropization can appreciably modify the
turbulent plasma dynamics.

3. STABILITY OF ALFVEN MODES

Stability of nonaxisymmetric Alfven modes in
anisotropic collisionless plasmas appreciably depends on
longitudinal redistribution of plasma energy. Near the
instability threshold the growth-rates as well as the
characteristic turbulent frequencies are less than the
bounce frequencies of longitudina particle motion. The
CGL mode is not applicable in this case. Therefore, we
use kinetic path-integral method [8] to calculate the
perturbation of particle distribution function f (t, r, v)and
to find the corresponding pressure perturbations. In this
case, under the assumption of high bounce frequencies,
perturbations of al relevant plasma parameters can be
expressed in terms of & Pressure tensor remans
diagonal, but behaviour of pr and pj differs that in CGL.
In other words, the CGL adiabats fail their applicability.
This is a direct consequence of nonhydrodynamic
longitudinal particles fluxes. We obtain

SpL(E)=dpLcal(é)+ (pr? py) (divér—¢, i),
dpI(€)=0 P co(€) —2pr (divErL—<ifr), (7
and &) issuch, that

div = (div é— &, /n)(1- pul py). )
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Note, that in the case of isotropic pressure pL = pj
nonaxisymmetric modes are incompressible asin TMHD.

The energy principle is obtained using linearized
equation of mation. Stability criterion for all m > 1 takes
the following form:

A(Br) By >+ 2B (BL) B+ C(B1) <O. 9)

Maximum B = 05 a . = 0, while maximum
BL=035 a By = 03. In isotropic case maximum
B = 0.34, while TMHD with B=5/3 gives max = 0.4.
Formal use of CGL in this case leads to criterion, which
is similar to (8), but is much more weak. Both regions of
stability are shown on the Fig. 2.
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Fig.2. Regions of gtahility with respect to
nonaxisymmetric modes (below curves);
solid line—realistic model, dotted line - CGL

CONCLUSIONS

Stability criterion of flute like-modes and the
corresponding  families of marginaly-stable (MS)
pressure profiles are calculated and analyzed. Possible
variants of MS plasma state formation are considered
taking into account an expected turbulent relaxation and
self-organization.

Stability of nonaxisymmetric Alfven modes is
investigated. We have shown, that particle fluxes, arising
under low-frequency perturbations, are responsible for
stability criterion, which is more stringent than in CGL
and TMHD both.
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MI'1-YCTOMYUBOCTD BECCTOJ}KHOBHTEJIBHOFI IIVIA3MbI C AHU30TPOITHBIM JABJIEHUEM,
VIEPKABAEMOM MATHATHBIM ITOJIEM BOJIBIIION KPUBU3HbBI

U.A. I'puzopwves, B.I1. Ilacmyxog

HUccnenoBana marauroruapoannamudeckas (ML) ycTOHYMBOCTS GECCTONKHOBUTEIBHON IUIA3MBI C aHH3OTPOITHBIM
JIaBJIeHHEM M KOHeUHOH [3. Iy MpoCcTOTH MBI aHATM3UPOBAIIM CUCTEMY THMA Z-TTMHYA C BHYTPEHHUM IPOBOJHUKOM Ha
OCH, KOTOpasi COOTBETCTBYET IMIMHAPHYECKON MOJENN AWIOIBHOM MarHUTHOW KOH(MTypamuu, oOjafaeT BaXKHBIMU
YepTamy, NPHCYIIMMH MarHWTHBIM CHCT€MaM C TojieM OOJNbIION KPWUBU3HBI, M OYEHb YAOOHA Ui HAYaIbHOTO
TEOpeTHYecKoro ucciezoBanns. OcecHMMETpHYHBIE KETOOKOBBIE MOABI pPAacCMAaTPUBAINCh HAMH B paMKax
OJIHOXKHJIKOCTHON aHW30TponHOU ruapoxuHamukd Yy-TI'onpbeprepa-Jloy (ULJI). IonydeH Kputepuil yCTOWYHBOCTH
KEMOOKOBBIX MOJ M PACCUMTAHBI M MMPOAHATM3UPOBAHBI COOTBETCTBYIOIIME CeMeiicTBa rpaHnydHo-ycroiuuBbx (I'Y)
npodmieit  nmaBneHus. B NPOTHBOMONOXXHOCTH  KEITOOKOBBIM  MOJaM, YCTOMYMBOCTH HEOCECHMMETPHYHBIX
anb()BEHOBCKUX MO/ CYIIECTBEHHO 3aBHUCHT OT IepepaclpeleeHUs] SHEPTHH IUIa3Mbl BJOJNb MAarHUTHBIX CHIIOBBIX
muHAl. [1o3TOMy BO3MyIIEHHS NMPOAONBHOTO U IOMNEPEYHOrO NABICHUS IIIA3Mbl BBIYUCISIIOTCA M3 KHHETHYECKOTO
YpaBHEHMsI C IOMOUIBIO METOIa HHTETPUPOBAHUS 110 TPACKTOPUSIM.

MTI'I-CTIMKICTh BE33IIITOBXYBAJBHOI IJIA3MH 3 AHIBOTPOITHUM TUCKOM,
1O YTPUMY€ETbHCSA MATHITHUM ITIOJIEM BEJIMKOI KPUBU3HUN

1.0. I'puzop'es, B.I1. Ilacmyxog

Hocnimkena maraitorigpogudamiaaa (MIJI) crilikicte 0e33iMITOBXYBaIBHOI IUIA3MH 3 AHI30TPOIMHHAM THCKOM i
KiHeBoto . i IpocTOTH MM aHaIi3yBaJld CUCTEMY THUITy Z-TliHYa 3 BHYTPIIIHIM MPOBIIHUKOM Ha OCi, IO BiNOBiga€e
MUTIHAPUIHIA MOJIETIi AUMTOIBHOI MaTrHITHOI KOHQIryparlii, Mae BayXJTUBI pUCH, BIACTUBI MATHITHUM CHCTEMaM 3 ITOJIEM
BEJIMKOI KPUBH3HM, 1 AYKE 3py4HA UL MOYATKOBOTO TEOPETHYHOIO JOCIIKEHHs. BicecumeTpuyHi jk0I00KOBI MOIH
PO3IISIIANKCS HAMH B PaMKaxX OXHOPIMMHHOI aHi3oTpomHOI riapoauHamiku Uy-T'onpbeprepa-Jloy (YIJI). Orpumano
KpHUTEpiil CTIHKOCTI K O0IO0OKOBIX MOJ i pO3paxoBaHi i [poaHaIi30BaHi BiAMOBiqHI ciMelicTBa rpanmaHO-CTiiikux (I'Y)
mpodiniB Trcky. Ha mpotuBary >komoOKOBHM MOIaM, CTIHKICTh HEBICECHMETPHUYHUX aNb(PBEHIBCHKHX MOJ iCTOTHO
3aJIe)KUATH Bif] TIEPEPO3NOALTY SHEeprii IIa3MU y3[I0BK MAarHITHHX CHIJIOBHX JiHiA. ToMy 30yproBaHHS HOIOBXHBOTO 1
MOMEPEYHOTO THUCKY IUTa3MH OOYHCIIOIOTHCS 13 KIHETHYHOTO PIBHSHHSA 3a JIOIMOMOTOI0 METOAY IHTETpYBaHHS II0
TPAEKTOPISX.
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