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MHD-STABILITY OF COLLISIONLESS ANISOTROPIC-PRESSURE
PLASMAS CONFINED BY HIGH-CURVATURE MAGNETIC FIELD

I.A. Grigoriev, V.P. Pastukhov

NFI, RRC ”Kurchatov Institute”, Moscow, Russia

Magnetohydrodynamic (MHD) stability of finite-beta collisionless plasmas with anisotropic pressure is investigated.
For simplicity we analyze Z-pinch-like magnetic configuration with internal conducting rod at the axis. This
configuration corresponds to cylindrical model of dipole magnetic configuration, has important features inherent in
magnetic systems with high field-line curvature, and is very convenient for an initial theoretical analysis. Axisymmetric
flute-like modes are analyzed in the frame of one fluid anisotropic magnetohydrodynamics of Chew-Goldberger-Low
(CGL). The stability criterion of flute-like modes and the corresponding families of marginally-stable (MS) pressure
profiles are calculated and analyzed. Contrary to the flute-like modes, stability of non-axisymmetric Alfven modes
strongly depends on redistribution of plasma energy along the field-lines. Therefore, perturbations of longitudinal and
transversal plasma pressures are calculated from kinetic equation using path-integral method.
PACS: 52.35.-g

1. INTRODUCTION

We consider the stability of static equilibrium of
axisymmetric finite = 2p/B2 ) plasma column confined
by pure azimuthal magnetic field (Z-pinch). All
perturbations of plasma parameters and magnetic fields in
various one-fluid MHD-like plasma models can be
described in terms of plasma displacement . Due to axial
symmetry the displacement can be expanded into Fourier
series =  (r, z) exp(im ), where each harmonic can be
analyzed independently. Traditional ideal MHD-model
with isotropic pressure (TMHD) predicts two classes of
the most dangerous perturbations in such geometry [1, 2]:
flute-like modes, which don’t depend on (m = 0), and
incompressible Alfven modes 1. Flute-like instability
can develop at arbitrarily small , while Alfven modes
can become unstable and dominate over flute-like ones
only when  is sufficiently large and exceeds a critical
value c∼ 1. In this paper we analyze modifications of the
above instabilities in more advanced and realistic MHD-
like plasma models.

2. STABILITY OF FLUTE-LIKE MODES

  Plasma uniformity along magnetic field lines and the
absence of longitudinal particle and energy fluxes in this
magnetic configuration guarantee that axisymmetric
motions of collisionless anisotropic plasma can be correctly
described by Chew-Goldberger-Low (CGL)
magnetohydrodynamics [3]. In particular, the stability of
flute-like modes in the CGL-model has to coincide with the
result of semi-kinetic analysis by Kruskal-Oberman [4].
  Unlike TMHD, CGL’s pressure is diagonal tensor:
pik = p ik +  (p -  p )bibk ; b  =  B/B. The pressure
components p  ,  p satisfy the conditions of conservation
of adiabats s  = p  / B, s  = p  B2 3 along fluid
trajectories. i.e. s ,  s   are the Lagrangian invariants [3].
This fact enables us to find variations of pressures
 p CGL(  )  , p CGL(  ) under plasma displacement

from arbitrary dynamical state [5]. These variations are
used to derive energy principle for static equilibria, that
guarantee the absence of linear instabilities when

2 W( ) 0 for any . 2 W( ) can be found by means of
direct variation of potential energy [6].
   Axial symmetry leads to one-dimensional equilibrium:

                    p ′+ (p p ) /r +B (r B)′/r = 0 .               (1)

Here and below prime denotes the radial derivative. Now
criterion of stability of flute-like modes can be written:

(p + p )′ + 3 p + 4 p  (1+ ) 1  (  +  /2)2B2

(1+ ) 1 (B2 p )( s )′ + B ( 3s )′/r 0,                     (2)

where  is the number of particles in specific flux-tube
volume U = r/B. Similar to s  and  s    is Lagrangean
invariant in axisymmetric plasma motions.
  Margin of stability is determined by equations (1) and
(2), but we need an additional one to close system.
  Rather often it is assumed that plasma equilibrium is
isotropic one p  = p  = p. In this case

p = const r 7/2 [1 + (a/r)3/2] 9 .          (3)

In low  case a  0

p ∼ r 7/2 ,                             (4)

and the pressure profile has the more steep decrease, than
in TMHD  = 5/3 (p    r 10/3 ). This is in accordance with
comparison theorem [7, p.12.4.].
  Marginally-stabile (MS) pressure profile for flute-like
modes in TMHD corresponds to homogeneity of
equilibrium entropy function S [1,2]. Computer
simulations [2] have shown that turbulence tends to
maintain the MS-state S = const with characteristic
relaxation time r. In our case we should expect that the
similar relaxation will lead to conditions  = const,
s  = const, and s   = const. As a result, we obtain the
following turbulent relaxed pressure profiles:

=Itot/(c ) , p =[r0 I 2 / 2r (r+ r0)2  ][1-(rcr/r)2] 2  ,

 p =[2 I 2 rcr
2 /r3 (r+ r0)  ][1-(rcr/r)2],                      (5)
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where Itot – total current in inner conductor and plasma
column, r0 = 2 p  r/B2 =const, rcr

2 = p r3/ 2B I =const . At
low 

 p    r 3 , p    r 4  .  (6)

  Pressure profiles, corresponding to both cases and to
TMHD, in double logarithmic scale are shown at Fig. 1.

Fig.1. Characteristic pressure profiles in double
logarithmic scale. Solid line - case of isotropization
p  = p  = p, upper and lower dashed lines - p and

p respectively, dotted line - TMHD

The characteristic time of turbulent relaxation can be
comparable with the time of pressure isotropization. In
this case the isotropization can appreciably modify the
turbulent plasma dynamics.

3. STABILITY OF ALFVEN MODES

Stability of nonaxisymmetric Alfven modes in
anisotropic collisionless plasmas appreciably depends on
longitudinal redistribution of plasma energy. Near the
instability threshold the growth-rates as well as the
characteristic turbulent frequencies are less than the
bounce frequencies of longitudinal particle motion. The
CGL model is not applicable in this case. Therefore, we
use kinetic path-integral method [8] to calculate the
perturbation of particle distribution function f (t, r, v)and
to find the corresponding pressure perturbations.  In this
case, under the assumption of high bounce frequencies,
perturbations of all relevant plasma parameters can be
expressed in terms of . Pressure tensor remains
diagonal, but behaviour of p  and p  differs that in CGL.
In other words, the CGL adiabats fail their applicability.
This is a direct consequence of nonhydrodynamic
longitudinal particles fluxes. We obtain

p (  ) = p CGL(  ) + ( p 2/ p  ) (div r /r) ,

p (  )= p CGL(  ) – 2 p  (div r /r) , (7)

and   is such, that

div  =  (div r /r)(1- p / p ).                                (8)

Note, that in the case of isotropic pressure p  = p
nonaxisymmetric modes are incompressible as in TMHD.
  The energy principle is obtained using linearized
equation of motion. Stability criterion for all m  1 takes
the following form:

              A( ) 2+ 2B ( ) + C( )  0 .         (9)

  Maximum  =  0.5  at    = 0 , while maximum
= 0.35 at  = 0.3. In isotropic case maximum

 = 0.34, while TMHD with  = 5/3 gives max = 0.4.
  Formal use of CGL in this case leads to criterion, which
is similar to (8), but is much more weak. Both regions of
stability are shown on the Fig. 2.

Fig.2. Regions of stability with respect to
nonaxisymmetric modes (below curves);

solid line – realistic model, dotted line - CGL

CONCLUSIONS

Stability criterion of flute like-modes and the
corresponding families of marginally-stable (MS)
pressure profiles are calculated and analyzed. Possible
variants of MS plasma state formation are considered
taking into account an expected turbulent relaxation and
self-organization.

Stability of nonaxisymmetric Alfven modes is
investigated. We have shown, that  particle fluxes, arising
under low-frequency perturbations, are responsible for
stability criterion, which is more stringent than in CGL
and TMHD both.

REFERENCES

1.  B.B. Kadomtsev // Reviews of Plasma Physics/ Ed. by
M.A. Leontovich. Moscow: “Gosatomizdat”, 1963; New
York: “Consultants Bureau”, 1966, v. 2.
2. V.P. Pastukhov, N.V. Chudin. Plasma Convection
near the Threshold for MHD Instability in Nonparaxial
Magnetic Confinement Systems // Plasma Physics
Reports. 2001, v. 27, p. 907.
3. G. Chew, M. Goldberger, F. Low. The Boltzmann
equation and the one-fluid hydromagnetic equations in the
absence of particle collisions. // Proc. R. Society. London.
1956. Ser. A236(1204), p.112.



17

4. M.D. Kruskal, C.R. Oberman On the stability of
plasma in static equilibrium // Phys. Fluids. 1959, v.1,
p. 275.
5.  V.I. Ilgisonis, V.P. Pastukhov. MHD Stability of
Steady-State Flows in a Toroidal Magnetized Plasma //
Plasma Physics Reports. 1996, v.22, p. 208.
6. V.I. Ilgisonis. Anisotropic plasma with flows in
tokamak: Steady state and stability // Phys. Plasmas.
1996, v. 3, N12, p.4577.

7. A.B. Mikhailovskii // Theory of plasma instabilities.
Moscow: “Atomizdat”, 1971; New York: “Consultants
Bureau”, 1974, v.2.
8. V.D. Shafranov // Reviews of Plasma Physics/ Ed. by
M.A. Leontovich. Moscow: “Gosatomizdat”, 1963; New
York: “Consultants Bureau”, 1967, v.3, p. 1-158.

,

. , . 

 ( ) 
.  Z-

, , 
, , 

. 
 ( ). 

  ( )
. , 

. 
.

,

. , . 

 ( ) 
.  Z- , 

, , 
, . 

 ( ). 
  ( )

. , 
. 

.


