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New non-polluting cryogenic vehicles operating on liquid nitrogen have been developed in the 

US and in Ukraine. Recent discovery of the low-temperature thermoelectric material CsBi4Te6 

motivates evaluation of thermoelectric generators for automotive cryogenic power systems. By 

recovering some of the cryogenic fuel’s latent heat of liquefaction by conduction through storage-

tank-embedded thermoelectric elements, a supply of energy can be created to power a vehicle’s on-

board electrical systems.  

The maximum energy conversion efficiency of a proposed cryogenic thermoelectric generator 

assembly embedded within a fuel storage tank approaches 15 %. To determine power production 

potential per unit area of storage tank, heat flow through the thermoelectric generator was 

calculated using a one-dimensional thermal model. We determined that thermoelectric generators 

are viable for power generation in cryogenic automobiles, and these generators can increase a 

vehicle’s total performance, making the thermoelectric generators a worthwhile addition. 
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1. INTRODUCTION 

 

 In the last twelve years, new non-polluting cryogenic vehicles operating on liquid 

nitrogen (LN2), which convert ambient thermal energy to mechanical work, were 

developed in the US at the University of North Texas (UNT) (Plummer et al., 1999; 

Plummer et al., 2000) and the University of Washington (UW) (Williams et al., 1997; 

Knowlen et al., 1999) and in Ukraine at Kharkov National Automobile and Highway 

University (KNAHU) (Bondarenko et al., 2004a; Turenko et al., 2005). Some of these 

vehicles are shown in Figure. 1. 

A motivation for developing such vehicles is to enable an environmentally 

friendly means of transportation that does not use batteries or hydrocarbon fuel. The 

cryogenic propulsion systems in these vehicles consist of a pneumatic engine, an air-

to-gaseous-nitrogen heat exchanger, and a cryogenic tank. The function of the tank is 

to provide both LN2 fuel storage and primary evaporation. The maximum specific 

energy of nitrogen as a working fluid is estimated at 770 kJ/kg for a temperature 

difference between ambient air at 300 K and LN2 at 77 K (Plummer et al., 1999). 

Using free thermal energy from the environment, the LN2 is heated to release its 

stored energy and produce compressed gas to run the pneumatic engine. An advantage 

of LN2 as an automobile fuel is the availability of abundant gaseous nitrogen in the 

atmosphere. When consumed for transportation, LN2 is environmentally benign. Like 

hydrogen fuel, LN2 is an energy carrier, not a source. So, energy must be invested to 

liquefy atmospheric nitrogen. However, this energy can be produced in a large 

stationary power plant with efficiency far exceeding internal combustion engines, and 

the effluent can be scrubbed or captured to mitigate pollution and greenhouse gasses. 

Moreover, the energy for liquefaction can also be obtained from alternative and non-

polluting sources, such as solar and wind, which provide the opportunity to create 

self-contained “green” regions that produce and utilize LN2 for pollution-free 

transport applications. 

 The critical constraint for cryogenic vehicles is fuel economy, which must be 

optimized to minimize the volume of LN2 onboard. Special attention is given to 

achieving maximum efficiency in all parts of the cryogenic power system 

(Bogomolov et al., 2004). The typical function of a LN2 Dewar is prolonged storage 

of cryogenic liquid by minimizing heat leak paths from the ambient into the liquid. 

For cryogenic vehicles, the storage tank serves two functions: 1) prolonged fuel 

storage when the vehicle is not in use (like a Dewar) and 2) rapid evaporation of the 

liquid to produce high-pressure gaseous nitrogen to drive the vehicle when it is in use 

(Bondarenko et al., 2004b). From this later function arises the classical 

thermodynamic arrangement of heat moving along a temperature gradient from hot to 

cold; this configuration can be adapted for supplementary energy generation. 

 Thermoelectric generators topping organic working fluid Rankine cycles will add 

to the overall energy of the system and thereby raise cycle efficiency (Miller et al. 

2009). The potential for automotive high temperature waste heat recovery using 

thermoelectric generators in diesel vehicles has been described (Crane, 2003). Here, 

we evaluate placing a thermoelectric generator within the wall of a LN2 storage tank 

on a cryogenic vehicle to recover part of the nitrogen’s latent heat of liquefaction as 

electricity. As we will demonstrate, this configuration presents a sufficient 

temperature gradient for useful thermoelectric generator applications. The recent 

creation of thermoelectric materials with high figure of merit at cryogenic 

temperatures further motivates analysis of this energy recovery technology for 
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practical cryogenic automobiles. Moreover, the presence of cryogenic liquid in a 

storage tank onboard the vehicle provides new synergistic opportunities. For example, 

generated electrical energy can be stored in the magnetic field of a high-temperature 

superconductor submerged in the tank, instead of as chemical energy stored in a 

battery as in conventional automobiles. 

 

2. THEORY AND BACKGROUND 

 

 The thermoelectric material figure of merit, Z [1/K], is defined as follows (Rowe, 

1999): 

𝑍 =
∝2

𝑘 𝜌 
 ,                                                           (1) 

 

where α is the Seebeck coefficient [V/K], k is the thermal conductivity of the material 

[W/m K], and ρ is the electrical resistivity of the material [Ohm∙m]. 

 Both p- and n-type semiconductor materials are used in making thermoelectric 

generators, and the properties of each are sometimes sufficiently different to warrant 

considering each material in estimating an overall figure of merit using the following 

equation (Rowe, 1999): 
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where the subscripts p and n correspond to the p-type and n-type materials 

respectively. 

 These parameters arise from the geometry of p- and n-type legs of thermoelectric 

generators arranged in series, as shown in Figure 2. The efficiency of a thermoelectric 

generator is given by (Rowe, 1999) 

 
 

𝜂 =
(𝑇ℎ−𝑇𝑐)

𝑇ℎ

(𝑀−1)

(𝑀+
𝑇𝑐
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 ,                                                (3) 

 

where the M factor is obtained by calculating 

 
 

𝑀 = (1 + 𝑍𝑇𝑚𝑒𝑎𝑛)
1

2 ,                                                                         (4)  

 
 

and Tmean is the mean temperature of the material, derived from temperatures Th and 

Tc of hot and cold ends of the thermoelectric material respectively. 

 A candidate thermoelectric material with high figure of merit at cryogenic 

temperatures has been identified: CsBi4Te6 (Chung et al., 2000; Chung et al., 2004; 

Lykke et al., 2006). For our analysis, this material was selected on the basis of 

producing the most energy per unit mass of cryogen vaporized. The CsBi4Te6 

compound is a very recent discovery and can achieve as much as a 40 % improvement 

in energy conversion efficiency over more traditional Bismuth Telluride compounds 



 

 
M. J. Traum, I. N. Kudryavtsev, M. C. Plummer, “Increasing the Efficiency of Cryogenic 
Automobile Power Systems Using Thermoelectric Generators,” Proceedings of the 
Conference on Physical and Technical Problems in Energetics and Their Solutions, V. N. 
Karazin Kharkiv National University, Kharkiv, Ukraine, November 15 – 16, 2011, pp. 33-37. 

(Chung et al., 2004; Kulbachinskii et al., 2001), which were previously the best 

cryogenic thermoelectric materials available. The temperature-dependent figures of 

merit for both materials are shown in Figure 3 (Chung et al., 2004). 

For estimation of the maximum performance of a thermoelectric generator placed 

within the walls of an automotive cryogenic tank, we used 300 K for Th and 80 K for 

Tc. We also used a high value of ZT for CsBi4Te6, 0.75, which corresponds to the 

assembly’s mean temperature value, 190 K. For these conditions, we calculate a 

maximum energy conversion efficiency of 14.9%. This value is the percentage of heat 

flowing into the generator’s hot surface which gets converted to electricity. To 

estimate the maximum electricity generation, heat flow through the thermoelectric 

element was next calculated. 

 

3. METHOD FOR ESTIMATING HEAT FLOW 

 

 The proposed thermoelectric assembly schematic, shown in Figure 2, provides a 

basis for estimating heat transfer through the generator. The thermoelectric generator 

consists of two branches, one n-type and one p-type, which are selected to be 3 mm in 

length. Manufacturing limitations on conventional thermoelectric generators prevent 

the entire space from being filled with generator material, and a packing fraction (PF) 

of 0.4 to 0.6 is typical. We use PF = 0.5 for heat transfer calculations. The remaining 

open space is under vacuum, as in a Dewar, to restrict undesirable heat transfer 

around the thermoelectric generator. Heat transfer though this void space occurs by 

radiation, and we estimate its magnitude at less than 0.2% of the conduction through 

the thermoelectric legs. So, radiation is ignored. 

 The legs of thermoelectric material are sandwiched within two thin copper layers, 

which provide electrical contact. Electrical insulation between the copper and 

cryogenic tank walls is provided by layers of Polytetrafluoroethylene (PTFE), a 

material chosen for its mechanical, electrical, and thermal stability from ambient to 

cryogenic temperatures. PTFE lines the inner and outer walls of the cryogenic storage 

tank. The inner tank wall contacts stored LN2 while the outer tank wall contacts the 

ambient environment. 

 A one-dimensional heat transfer model was applied to the thermoelectric 

generator assembly to estimate maximum heat flux for a set of material properties and 

realistic assembly dimensions presented in Table 1. Cryogenic tank wall thicknesses 

were selected to withstand an internal pressure up to 3.5 MPa (500 psi). One-

dimensional Cartesian heat transfer was assumed because the tank radius is large 

enough to neglect surface curvature local to the thermoelectric assembly. 

 For the cryogenic tank inner wall, which is in direct contact with liquid nitrogen, 

heat transfer to the liquid is assumed to occur via nucleate boiling. This assumption is 

justified because the calculated burn-out heat flux is about 135 times greater than the 

heat flux through the inner evaporator wall, and this wall is always at similar 

temperature to the liquid. The convective heat transfer coefficient is estimated from 

classic nucleate pool boiling correlation (Rosenow, 1952) on an upward-facing heated 

plate,  
 

ℎ𝑡𝑎𝑛𝑘 =
𝑘𝑙 𝐽𝑎2

𝐶𝑛𝑏
3 𝑃𝑟𝑙

𝑚[
𝜎

(𝜌𝑙−𝜌𝑣)𝑔
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where kl, Ja, Pr, σ are respectively the liquid’s thermal conductivity, Jackob number, 

Prandlt number, and surface tension; ρl and ρv are respectively the liquid and vapor 

densities; and g is the gravitational constant. The coefficient Cnb arises from 

experimental data and Cnb = 0.004 is suggested (Mirza, 1990) as value at the top of 

the range for smooth surfaces and the bottom of the range for rough surfaces. The 

exponent m also normally arises from experimental data, but an appropriate value 

could not be found in the literature for boiling nitrogen. Experimentally correlated m 

values range from 2 to 4.1 (Mills, 1999a). We therefore select m = 3, which is in the 

center of the range of available values for other boiling liquids. The approach gives a 

convective heat transfer coefficient on the inner cryogenic tank wall of 4890 

W/(m2K), which compares favorably to 8520 W/(m2K), a representative heat transfer 

coefficient calculated for boiling water at ambient pressure (Holman, 1976). 

 To estimate the natural convection heat transfer coefficient between the 

cryogenic tank’s outside surface and ambient, a shape- and size-independent 

correlation (Mills, 1999a) for a cooled plate facing downward is used, 
 

ℎ𝑎𝑚𝑏𝑖𝑒𝑛𝑡 = 0.14 (
𝜌air Δ𝜌 𝐶𝑝,𝑎𝑖𝑟 𝑔

μair

)

1

3
𝑘

𝑎𝑖𝑟

2

3  ,                                        (6) 

 
 

where ρair, Cp,air, μair, and kair are the density, specific heat, viscosity, and thermal 

conductivity respectively of air evaluated at ambient conditions (300 K and 1 atm), 

and Δρ is the air density difference between ambient and the temperature of the tank’s 

outside surface. Importantly, this approach assumes 1) natural convection only with 

no forced convection, in other word the tank and car are not moving; 2) no liquid 

condensate or ice build-up on the tank’s outer surface; 3) the tank is elevated far 

enough off the ground that no obstructions interfere with the convection process; and 

4) radiation heat transfer between the tank surface and the ground is negligible. 

Forced convection and radiation to the ground would tend to increase hambient while 

convection obstructions and ice build-up would tend to lower it. Equation 6 gives a 

convective heat transfer coefficient on the outer cryogenic tank wall of 9.4 W/(m2K), 

which is within the generally accepted range of 3 – 25 W/(m2K) typical for this 

process (Mills, 1999b). 

 

4. RESULTS AND DISCUSSION 

 

 Table 2 gives thermal resistances for each element within the thermoelectric 

generator assembly calculated in the arrangement proposed. The greatest resistances 

to heat transfer occur at the outer wall, within the layers of PTFE insulation, and 

across the thermoelectric generator. Resistances in the metal layers are so 

comparatively small that they can be neglected. 

 The calculated energy conversion efficiency is 14.9% and the heat flux entering 

the hot side of the thermoelectric generator is 1477 W/m2. Therefore, the electrical 

energy generated per square meter of cryogenic storage tank is 220 W/m2. The 

voltage/current balance can be adjusted, depending on the needs of the electrical 

system, by wiring multiple thermoelectric generator couples in parallel (to increase 

voltage) or in series (to increase current). Since heat absorption from the environment 
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will take place only where the liquid is available for evaporation, it is not economical 

to line the entire cryogenic storage tank with thermoelectric generators. Instead, the 

generators should be placed at the bottom of the tank where gravity ensures liquid will 

always be present provided some fuel remains. Dividing heat flux by thermoelectric 

length gives a volume-specific power of 73 kW/m3, and dividing this power by the 

density of CsBi4Te6 (7088 kg/m3 per Chung et al., 2004) gives a mass-specific power 

of 10.34 W/kg. 

 This performance analysis is optimistic because it fixes the temperatures on the 

hot and cold sides of the thermoelectric material at 300 K and 80 K respectively. In 

reality, these temperatures will each adjust, as governed by the thermal circuit made 

up of the thermoelectric assembly, to become closer to the mean assembly 

temperature. The corresponding reduction in temperature gradient will drop the 

thermoelectric generator efficiency. The constrained temperature model used in these 

calculations exaggerates the benefit of low PF and short thermoelectric generators. By 

reducing these two geometric parameters for this model, the total mass of 

thermoelectric assemblies in the wall of the cryogenic tank drops, but efficiency is 

unaffected. Moreover, by reducing the generator length (thereby reducing the thermal 

resistance presented by the thermoelectric material), more heat flux is allowed 

through the generator, which appears to increase the total electrical work output 

because efficiency is unaffected using the fixed temperature model. In reality, 

reducing the thermoelectric generator length would also reduce the resistance to heat 

conduction through the thermoelectric generator assembly, which would decrease the 

temperature gradient supported by the generator. Reduced temperature gradient across 

the thermoelectric generator drops its efficiency. We therefore expect these competing 

effects to yield an optimization problem resulting in calculable thermoelectric 

generator lengths that give maximum power point, maximum volume-specific power, 

and maximum mass-specific power (but not necessarily at the same length). 

 While the development of low-temperature thermoelectrics embedded in storage 

tank walls will lead to increased total efficiency of power system for cryogenic 

vehicles, the necessary presence of LN2 fuel motivates further areas of study. For 

example, generator performance could be further enhanced by judicious application of 

permanent or induced magnetic fields to capitalize on the Ettinghausen effect (Rowe, 

1995). Also, it is well-known that thermoelectric generators produce high electric 

currents, which can be harnessed for energy storage in superconducting magnetic 

energy storage (SMES) systems. SMES based on high-temperature superconductors 

could be kept at operating temperatures via immersion in the cryogenic fuel tank. 

These systems possess sufficient specific power and might be used on hybrid-electric 

cryogenic vehicles for propulsion (Bogomolov et al., 2003; Kudryavtsev et al., 2002). 

 

5. CONCLUSIONS 

 

 Due to the appearance of a new thermoelectric compound CsBi4Te6, which is 

effective at cryogenic temperatures, efficiency improvement of LN2 evaporators for 

cryogenic automobiles can be achieved. By lining the vehicle’s cryogenic storage tank 

with thermoelectric generators, up to 14.9% of the heat flux necessary for fuel 

evaporation that was simply lost before can be directly converted to useful energy to 

power the automobile’s electrical systems. Using published parameters for CsBi4Te6 

and a one-dimensional heat transfer model for a practical thermoelectric generator 
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assembly, a volume-specific power of 73 kW/m3 and a mass-specific power of 10.34 

W/kg were calculated for cryogenic vehicle applications. 
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Figure 1. Experimental Cryogenic Vehicles Operating on LN2: UNT (left) and KNAHU (right). 

 

 
 

Figure 2. Basic Elements of the Proposed Thermoelectric Generator Assembly 
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Figure 3. ZT Values of CsBi4Te6 and Bi2-xSbxTe3 (Chung et al., 2004) 

 

 

 

 

 

Table 1: Properties of Component Materials 

(Cheng et al., 2004; Lide, 2006; Medvedev et al., 1987 
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Temperature [K]

Bi2-xSbxTe3

CsBi4Te6

Material Thickness

Thermal

Conductivity

Units mm W/(m K)

Aluminum

Inside (80 K) 6 432

Outside (300 K) 3 237

Copper

Inside (80 K) 1 557

Outside (300 K) 1 401

Teflon

Inside (80 K) 5 0.25

Outside (300 K) 5 0.28

CsBi 4 Te 6 3 1.48
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Table 2: Thermal Resistances of Elements in the Thermoelectric Generator Assembly. 

 

 
 

Outer Wall

Convection

Outer Wall Al

Conduction

Hot Side PTFE

Conduction

[m
2
K/W] [m

2
K/W] [m

2
K/W]

1.07E-01 1.27E-05 1.80E-02

Hot Side Copper

Conduction

Thermoelectric

Generator

Cold Side Copper

Conduction

[m
2
K/W] [m

2
K/W] [m

2
K/W]

2.49E-06 1.01E-02 1.80E-06

Cold Side PTFE

Conduction

Inner Wall Al

Conduction

Inner Wall

Convection

[m
2
K/W] [m

2
K/W] [m

2
K/W]

1.99E-02 1.39E-05 2.05E-04
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