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1. Main results

Let the system
n

∑

3
j=1

a
(µ)
j xj = 0, µ ∈ J, (1.1)

be given over the field GF (3), where J = {1, 2, . . . , T}, T ≥ 1, and
∑

3

is the symbol of addition over the field GF (3), which satisfies condition
(А).

Condition (А): The coefficients a
(µ)
j , 1 ≤ j ≤ n, µ ∈ J are inde-

pendent random quantities with the distribution P{a
(µ)
j = a} = pµ, a ∈

GF (3), a 6= 0 and P{a
(µ)
j = 0} = 1 − 2pµ.

Let νn denote the number of solutions x̄, x̄ ∈ Vn, of system (1.1) with
the number |x̄| of nonzero components is greater than zero, and |x̄| > 0
(here, Vn is the set of all n-dimensional vectors over the field GF (3)) .
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Theorem 1.1. Let conditions (A) and

lnn + z

n
≤ pµ ≤

1

2
−

lnn + z

n
, µ ∈ J, (1.2)

where z = o(lnn), n → ∞, be satisfied.

Then the condition
T

n
≥ 1 + γn, (1.3)

where nεγn → ∞, γn → 0, n → ∞, ε = const, 0 < ε < 1, is sufficient,

and the condition
T

n
≥

ln 1, 8

ln 3
, (1.4)

is necessary in order that

P{νn > 0} = o(1), n → ∞. (1.5)

Theorem 1.2. Let conditions (A) and

En lnn

n
≤ pµ ≤

1

2
−

En lnn

n
, µ ∈ J, (1.6)

where En → ∞ as n → ∞, be satisfied.

Then the condition

T = n + An, (1.7)

where An → ∞ as n → ∞, is sufficient, and the condition (1.4) is

necessary in order that relation (1.5) be valid.

2. Auxiliary statements

Lemma 2.1. Let ξ be a random quantity that is given by ξ = ξ1 +3

· · ·+3 ξk, where ξ1, . . . , ξk are independent identically distributed random

quantities; P{ξs = 0} = 1 − 2p∗, P{ξs = a} = p∗, a ∈ GF (3), a 6= 0,
s = 1, . . . , k, 1 ≤ k < ∞, +3 is the operation of summation in the field

GF (3). Then

P{ξ = a} =
1

3
−

1

3
(1 − 3p∗)k, a ∈ GF (3), a 6= 0.

Proof. The proof of Lemma 2.1 can be realized by the method of math-
ematical induction on the parameter k ≥ 1.

Lemma 2.2. If condition (A) is satisfied, then the expectation Eνn of

the random quantity νn is equal to

Eνn = 3−T
n

∑

t=1

(

n

t

)

2tQ, (2.1)
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Q =

T
∏

µ=1

(1 + 2(1 − 3pµ)t). (2.2)

Proof. Let ξ(x̄) is the indicator of an event which consists in that the
vector x̄, x̄ ∈ Vn, is a solution of system (1.1). With regard for condition
(A), we have

Eνn =
∑

x̄:|x̄|≥1

Eξ(x̄) =
∑

x̄:|x̄|≥1

T
∏

µ=1

P

( n
∑

3
j=1

a
(µ)
j xj = 0

)

. (2.3)

The number of nonzero terms in
∑

3 on the right-hand side of (2.3)
is equal to t, where t is the total number of nonzero components of the
vector x̄, |x̄| ≥ 1. Then, using (2.3) and Lemma 2.1, we get (2.1).

For arbitrary vectors x̄(q) ∈ Vn, x̄(q) = (x
(q)
1 , . . . , x

(q)
n ), q = 1, 2, we

denote, by ic1c2 , the number of components of the vector x̄(1) which are
equal to c1. In the vector x̄(2), they correspond to components which
equal c2, where c1, c2 ∈ GF (3), 0 ≤ ic1c2 ≤ n.

Let I = {i01, i02, i10, i20, i11, i22, i12, i21}, i = i01 + i02, l = i10 + i20,

t =
∑

j∈I

j, Eν
[2]
n = Eνn(νn − 1).

Lemma 2.3. If condition (A) is satisfied, then

Eν[2]
n = 9−T

n
∑

t=1

(

n

t

)

∑ t!
∏

j∈I

j!
Q∗, (2.4)

where

Q∗ =
T

∏

µ=1

(

1 + 2

( 4
∑

r=1

(1 − 3pµ)Γ
(r)

))

, (2.5)

the summation
∑

is realized over all j ∈ I so that
∑

j∈I j = t; in equality

(2.4), elements of the set I satisfy the relations

t − i ≥ 1, (2.6)

t − l ≥ 1, (2.7)

i + l + i12 + i21 ≥ 1; (2.8)

and the parameters Γ(k), k = 1, 2, 3, 4, are determined, respectively, by

the equalities

Γ(1) = i + l, (2.9)
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Γ(2) = t − l, (2.10)

Γ(3) = t − i, (2.11)

Γ(4) = t. (2.12)

Proof. Using condition (A) and the relation

Eν[2]
n =

∑∗
Eξ(x̄(1))ξ(x̄(2)),

where the summation
∑∗ is executed over all pairs (x̄(1), x̄(2)) of the

vectors x̄(q) ∈ Vn such that |x̄(q)| ≥ 1, q = 1, 2, x̄(1) 6= x̄(2), we get

Eν[2]
n

=
∑∗

T
∏

µ=1

P{∪{A(µ)(x̄(k)) = yk, A
(µ)(x̄(1), x̄(2)) = y12, k = 1, 2}}

=
∑∗

T
∏

µ=1

∑∗∗
P{A(µ)(x̄(1), x̄(2)) = y12}

×
∏

k=1,2

P{A(µ)(x̄(k)) = yk}, (2.13)

where the symbol ∪ /
∑∗∗ / union /summation/ is applied to all solutions

of the system of equations

{
y1 +3 y12 = 0,

y2 +3 y12 = 0
.

over the field GF (3); for µ ∈ J ,

A(µ)(x̄(1), x̄(2)) =
∑

3
ω∈E(12)

a(µ)
ω , A(µ)(x̄(q)) =

∑

3
ω∈E(q)

a(µ)
ω , q = 1, 2,

where
E(12) =

{

j, 1 ≤ j ≤ n : x
(q)
j 6= 0, q = 1, 2

}

,

E(q) =
{

j, 1 ≤ j ≤ n : x
(q)
j 6= 0, x

(q∗)
j = 0

}

,

q ∈ {1, 2}, q∗ ∈ {1, 2}, q∗ 6= q.
Let γ(1), γ(2), and γ(3) be the numbers of elements of the sets, re-

spectively, E(1), E(2), and E(12).
We set

Γ(1) = γ(1) + γ(2), Γ(2) = γ(2) + γ(3),

Γ(3) = γ(1) + γ(3), Γ(4) = γ(1) + γ(2) + γ(3).
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By condition (A) and Lemma 2.1, relation (2.13) can be rewritten as

Eν[2]
n = 9−T

∑∗
T

∏

µ=1

(

1 + 2

( 4
∑

k=1

(1 − 3pµ)Γ
(k)

))

. (2.14)

The summation
∑∗ on the right-hand side of (2.14) over all pairs

(x̄(1), x̄(2)) such that x̄(1) 6= x̄(2), |x̄(q)| ≥ 1, q = 1, 2, is equivalent to
the summation over all parameters j ∈ I on the right-hand side of (2.4).
Inequalities (2.6), (2.7), and (2.8) guarantee for the relations |x̄(1)| ≥ 1,
|x̄(2)| ≥ 1, and x̄(1) 6= x̄(2), respectively, to be satisfied.

Then we will verify equality (2.9). Indeed, because the sum i10+i20 is
the number of nonzero components of the vector x̄(1) which correspond
to zero components of the vector x̄(2), we have found |E(1)| = γ(1) =
i10 + i20. By analogy, we get |E(2)| = γ(2) = i01 + i02. That is why,
Γ(1) = γ(1) + γ(2) = i + l, which proves (2.9). In the same way, we verify
equalities (2.10)–(2.12).

Lemma 2.4. If conditions (A) and

pµ ≤
1

2
− υ, (2.15)

where 0 < υ ≤
1

2
, µ ∈ J , are satisfied, then

Eνn > 0. (2.16)

Proof. To prove relation (2.16), it is sufficient to show with regard for
(2.1) and (2.2) that, for n ≥ 1,

Q > 0. (2.17)

To this end, we represent the product Q which is determined by equality
(2.2) in the form

Q =
3

∏

r=1

Qr, (2.18)

where Qr denote the product of all multipliers on the right-hand side of
(2.2), for which the parameter µ belongs to the set Wr, r = 1, 2, 3. Here,

W1 = {µ, 1 ≤ µ ≤ T : pµ ≤
1

3
},

W2 = {µ, 1 ≤ µ ≤ T :
1

3
< pµ ≤

1

2
− υ, t even},

W3 = {µ, 1 ≤ µ ≤ T :
1

3
< pµ ≤

1

2
− υ, t odd},
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where t ≥ 1, and t is the parameter from the right-hand side of equality
(2.2).

Let ηr be the number of elements of the set Wr, ηr = |Wr|, r = 1, 2, 3.
Then

3
∑

r=1

ηr = T. (2.19)

From the definition of the products Q1 and Q2, we get

Q1 ≥ 1, Q2 ≥ 1. (2.20)

Using condition (2.15), we find

Q3 ≥ (6υ)η3 . (2.21)

From (2.18)–(2.21), we have

Q ≥ (6υ)η3 ,

which gives (2.17) and, hence, (2.16).

We denote

pmax = max
1≤µ≤T

pµ, pmin = min
1≤µ≤T

pµ.

Lemma 2.5. Let conditions (A), (1.2), and

T

n
<

ln 1, 8

ln 3
− γ, (2.22)

where γ is a fixed positive number, be satisfied.

Then, for arbitrary t ∈ F , where F = [[23n] − [ n
ln n

];n], the relation

Q ≥ a1 (2.23)

holds as n → ∞, where [d] is the integer part of a number d. Here and

below, az is a fixed positive number, az < ∞, z = 1, 2, . . .

Proof. By virtue of (2.18), for proving (2.23), it is sufficient to show that,
for t ∈ F and n ≥ 1, there exists a2 such that

Qr ≥ a2, r = 1, 2, 3. (2.24)

With the help of (1.2) for µ ∈ W1 and t ∈ F for n → ∞, we get

(1 − 3pµ)t ≥ (1 − 3pmax)t ≥ −a32
− 2

3
n− n

ln n n−4(1+o(1)). (2.25)
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Using (2.22) and (2.25) as n → ∞, we get

Q1 ≥ (1 − a42
− 2

3
n− n

ln n n−4(1+o(1)))(
ln 1,8
ln 3

−γ)n,

which yields (2.24) for r = 1.
We now check relation (2.24) for r = 2. Indeed, taking (1.2) into

account for µ ∈ W2 and t ∈ F , we find, as n → ∞,

(1 − 3pµ)t ≥ (1 − 3pmin)t ≥ −a5n
−3(1+o(1)). (2.26)

Using (2.22) and (2.26) for n → ∞, we get

Q2 ≥ (1 − a6n
−3(1+o(1)))(

ln 1,8
ln 3

−γ)n. (2.27)

With the help of (2.27), we get (2.24) for r = 2.
Inequality (2.24) for r = 3 follows from (2.2) and from the relations

(1 − 3pµ)t ≥ −(3pmax − 1)t ≥ −a32
− 2

3
n− n

ln n n−4(1+o(1))

for µ ∈ W3, t ∈ F , and n → ∞. Whence, taking (2.18) and (2.24) into
account, we get relation (2.23).

Lemma 2.6. If conditions (A), (1.2), and (1.3) are satisfied, then, as

n → ∞,

D1 = o(1), (2.28)

where

D1 = 3−T

[ε1
n

ln n
]

∑

t=1

(

n

t

)

2tQ.

Here, εq is a sufficiently small fixed positive number, and q ≥ 1.

Proof. Using (1.2) and the relation pmint ∈ (0; 1) for n → ∞ and t ∈
[1; [ε1

n
ln n

]], we get

Q ≤ 3T (1 − 2pmint + 3(pmint)2)T . (2.29)

Using (2.29), we find, as n → ∞,

D1 ≤

[ε1
n

ln n
]

∑

t=1

(2n)t

t!
exp

{

− 2Ttpmin

(

1 −
3

2
ε1

n

lnn
pmin

)}

. (2.30)

With the help of (1.2) for all t ∈ [1; [ε1
n

ln n
]], we have

( 2

e2Tpmin(1− 3
2
ε1

n
ln n

pmin)−ln n

)t

≤
( 2

e2T
n

(ln n+z)(1− 3
2
ε1(1+ z

ln n
))−ln n

)t

.
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Then, taking (1.3) and (2.30) into account, we obtain the estimate

D1 ≤

[ε1
n

ln n
]

∑

t=1

1

t!
exp{−t(lnn + 2z)(1 − 3ε1 + o(1))}, n → ∞. (2.31)

This relation yields obviously (2.28).

Lemma 2.7. If conditions (A), (1.2), and (1.3) are satisfied, then, as

n → ∞,

D2 = o(1), (2.32)

where

D2 = 3−T

[ε2n]
∑

t=[ε1
n

ln n
]+1

(

n

t

)

2tQ.

Proof. For t ∈ [[ε1
n

ln n
] + 1, [ε2n]], we find

Q ≤
(

1 + 2 exp
{

− 3pmin

([

ε1
n

lnn

]

+ 1
)})T

. (2.33)

As n → ∞, relations (1.2) and (2.33) yield

D2 ≤

(eσ1(ε2) n
T (1 + 2

e
3ε1(1+ z

ln n
) )

3

)T

, (2.34)

where σr(ε) → 0(ε → 0), r ≥ 1. In view of assumption (1.3), condition
(1.2) for z = o(lnn), and inequality (2.34), we get (2.32).

Lemma 2.8. If conditions (A), (1.2), and (1.3) are satisfied, then, as

n → ∞,

D3 = o(1), (2.35)

where

D3 = 3−T
n

∑

t=[ε2n]+1

(

n

t

)

2tQ.

Proof. For all t ∈ [[ε2n] + 1, n],

Q ≤ (1 + 2 exp{−3pmin([ε2n] + 1)})T . (2.36)

Using (1.2) and (2.36), we have

D3 ≤
3n

3T
exp

{ 2T

exp{3ε2(lnn)(1 + z
ln n

)}

}

. (2.37)
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With the help of relations z = o(lnn), nεγn → ∞ as n → ∞, and (2.37),
we get

D3 ≤ exp
{

− Tγn(ln 3)
{

−
2

γn(ln 3)n3ε2(1+o(1))
+ 1 + O(γn)

}}

.

This directly yields (2.35).

Lemma 2.9. If conditions (A), (1.6), and (1.7) are satisfied, then rela-

tion (2.35) is valid.

Proof. To prove the validity of (2.35), we note that, first, the product Q
satisfies estimate (2.36). Second, using condition (1.6) for n → ∞, we
get

D3 ≤
3n

3T

(

1 +
2

n3ε2En

)T

.

Then, taking (1.7) into account, we have, as n → ∞,

D3 ≤ exp
{ 2n

n3ε2En

}(exp{ 2
n3ε2En

}

3

)An

. (2.38)

With the help of conditions En → ∞, An → ∞ for n → ∞, and (2.38),
we find (2.35) for n → ∞.

3. Proof of theorems

Proof of Theorem 1.1. Sufficiency. We will show that if relation (1.3) is
valid, then

Eνn = o(1), n → ∞. (3.1)

In view of (2.1) and (2.2), the expectation Eνn can be written as

Eνn =

3
∑

h=1

Dh, (3.2)

where

Dh = 3−T
∑

t∈Rh

(

n

t

)

2tQ, h = 1, 2, 3.

The closed segments Rh, h = 1, 2, 3, whose ends are integers, are as
follows: R1 = [1, [ε1

n
ln n

]], R2 = [[ε1
n

ln n
] + 1, [ε2n]], R3 = [[ε2n] + 1, n].

To prove (3.1) with the help of (3.2), it is sufficient to be convinced
that, for n → ∞,

Dh = o(1) (3.3)
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for h = 1, 2, 3. Using (2.28), (2.32), and (2.35), we get (3.3) for h = 1, 2, 3.
Relations (3.2) and (3.3) yield (3.1). Taking (3.1) and the Chebyshev

inequality into account, we get (1.5).
Necessity. As n → ∞, let the probability P (νn > 0) tend to zero,

i.e.,

P (νn > 0) → 0, n → ∞. (3.4)

We will show that (1.4) is satisfied. Let us assume that equality (1.4)
does not hold, i.e. relation (2.22) has place. We will show that, in this
case,

P (νn > 0) > 0 (3.5)

as n → ∞. That is, the nonzero solutions exist with a positive probabil-
ity. To that end, we will check the estimates for n → ∞,

(Eνn)−1 ≤ a7, (3.6)

Eν[2]
n (Eνn)−2 ≤ a8, (3.7)

with their subsequent use in the inequality [1]

P (νn > 0) ≥ ((Eνn)−1 + Eν[2]
n (Eνn)−2)−1. (3.8)

Indeed, with the help of relations (2.1), (2.2), and Lemma 2.4 for
t ∈ F and n → ∞, we have

(Eνn)−1 ≤ 3T−nδn, (3.9)

where

δn ≤ a−1
1 (3−n

∑

t∈F

(

n

t

)

2t)−1. (3.10)

Using the equality 3−n
∑n

t=0

(

n
t

)

2t = 1, we get

3−n

[ 2
3
n]−[ n

ln n
]

∑

t=0

(

n

t

)

2t ≤ exp
{

−
n

ln2 n

(9

4
+ O((lnn)−1)

)}

→ 0,

n → ∞, whence

3−n
∑

t∈F

(

n

t

)

2t → 1, n → ∞. (3.11)

Relations (3.9)–(3.11) yield (3.6).
We now show that, as n → ∞, there exists a number a9, for which

(3T−nEνn)−1 ≤ a9. (3.12)
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Indeed, taking (3.9) into account, we obtain

(3T−nEνn)−1 ≤ δn (3.13)

as n → ∞. But, using (3.10) and (3.11), we get the inequality limn→∞ δn

≤ a−1
1 , which together with (3.13) proves (3.12).

Relation (3.12) implies that, to order to prove (3.7), it suffices to
show that the relation

9T−nEν[2]
n ≤ a10, n → ∞, (3.14)

holds.

To that end, we rewrite the left-hand side of (3.14) with the help of
(2.4) and (2.5) as

9T−nEν[2]
n = 9−nS(n; Q∗), (3.15)

where

S(n; Q∗) =
n

∑

t=1

(

n

t

)

∑

∑

j∈I

j=t

t!
∏

j∈I

j!
Q∗. (3.16)

We represent the sum S(n; Q∗) as

S(n; Q∗) = S1(n; Q∗) + S2(n; Q∗), (3.17)

where S1(n; Q∗) differs from S(n; Q∗) by that the summation on the
right-hand side of (3.16) is performed over all j, j ∈ I such that

Γ(k) ≥ εn, (3.18)

where ε = const, 0 < ε < 1, Γ(k) are determined by equalities (2.9)–
(2.12) for k = 1, 2, 3, 4; and S2(n; Q∗) is the sum of terms from S(n; Q∗)
which do not enter S1(n; Q∗). Then, in view of (1.2), (2.5), (2.22), and
(3.18), we get the estimate

S1(n; Q∗) ≤ S1(n; 1)Q∗
1, (3.19)

where Q∗
1 = (1 + 8n−3ε(1+ z

ln n
))(

ln 1,8
ln 3

−γ)n. The inequality

S1(n; 1) ≤ 9n (3.20)

together with (3.19) give us

S1(n; Q∗) ≤ a119
n(1 + 8n−3ε(1+ z

ln n
))(

ln 1,8
ln 3

−γ)n. (3.21)
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We represent the sum S2(n; Q∗) as

S2(n; Q∗) =
4

∑

r=1

S2;r(n; Q∗), (3.22)

where S2;r(n; Q∗) differs from S2(n; Q∗) by that the summation on the
right-hand side of (3.16) is realized over all parameters j, j ∈ I such
that there exist l1, . . . , lr ∈ {1, 2, 3, 4}, for which Γ(lh) < εn, Γ(k) ≥ εn,
where k ∈ {1, 2, 3, 4}\{l1, . . . , lr}, h = 1, . . . , r, r = 1, 2, 3, 4. Then, for
r = 1, 2, 3, 4, we can write S2;r(n; Q∗) in the form

S2;r(n; Q∗) =
∑

1≤t1<···<tr≤4

S2;r;t1,...,tr(n; Q∗), (3.23)

where S2;r;t1,...,tr(n; Q∗) denotes the sum of all terms that belong to
S2;r(n; Q∗) and for which Γ(tl) < εn, l = 1, . . . , r, Γ(t′) ≥ εn, t′ ∈
{1, 2, 3, 4}\{t1, . . . , tr}.

We now show that, for r = 1,

S2;r(n; Q∗) ≤ a123
( ln 1,8

ln 3
−γ)neσ2(ε)n

× (1 + 2n−3ε(1+ z
ln n

))(
ln 1,8
ln 3

−γ)n(5n + 3n + 1). (3.24)

Indeed, with the help of (1.2), (2.5), (2.22), and (3.23) for r = 1, we
get

S2;r(n; Q∗) ≤ Q∗
2;r

4
∑

l=1

S2;r;l(n; 1), (3.25)

where Q∗
2;r = a133

( ln 1,8
ln 3

−γ)n(1 + 2n−3ε(1+ z
ln n

))(
ln 1,8
ln 3

−γ)n.
Then we estimate every of four terms S2;r;l(n; 1), l = 1, 2, 3, 4 on the

right-hand side of (3.25).
The inequality Γ(1) < εn and relation (2.9) imply that all parameters

j, j ∈ I∗ \ {i11, i22, i12, i21, i00}, I∗ = I ∪ {i00} which are present in
the definition of the sum S(n; Q∗) do not exceed εn. Then, using the
polynomial formula, we have

S2;1;1(n; 1) ≤ 5n exp{σ3(ε)n}. (3.26)

In order to verify the validity of the estimate

S2;1;2(n; 1) ≤ 3n exp{σ4(ε)n}, (3.27)

it is sufficient to observe, by taking (2.10) and the inequality Γ(2) < εn
into account, that all parameters j, j ∈ I∗ \ {i10, i00, i20} on the right-
hand side of (3.16) do not exceed εn.
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With the help of (2.11) by analogy with (3.27), we get

S2;1;3(n; 1) ≤ 3n exp{σ5(ε)n}. (3.28)

The inequality Γ(4) < εn and relation (2.12) imply that all parameters
j, j ∈ I∗ \ {i00} which enter the sum S(n; Q∗) do not exceed εn. This
yields

S2;1;4(n; 1) ≤ exp{σ6(ε)n}. (3.29)

Using (3.25)–(3.29), we get

S2;1(n; 1) ≤ a14 exp{σ7(ε)n}(5
n + 3n + 1). (3.30)

Relations (3.25) and (3.30) prove (3.24).
We will show that, for r = 2, the estimate

S2;r(n; Q∗) ≤ a15e
σ8(ε)n5( ln 1.8

ln 3
−γ)n

×
(

1 +
4

5
n−3ε(1+ z

ln n
)
)( ln 1.8

ln 3
−γ)n

(3.31)

holds.
Indeed, with the help of (1.2), (2.5), (2.22), and (3.23) for r = 2, we

get

S2;r(n; Q∗) ≤ Q∗
2;r

∑

1≤t1<t2≤4

S2;r;t1,t2(n; 1), (3.32)

where Q∗
2;r = a165

( ln 1,8
ln 3

−γ)n(1 + 4
5n−3ε(1+ z

ln n
))(

ln 1,8
ln 3

−γ)n.

Using the inequalities Γ(t1) < εn, Γ(t2) < εn, 1 ≤ t1 < t2 ≤ 4, and
relations (2.9)–(2.12), we established that all parameters j, j ∈ I∗\{i00}
on the right-hand side of (3.16) do not exceed εn. This allows us to write
the estimate

max
1≤t1<t2≤4

S2;2;t1,t2(n; 1) ≤ exp{σ9(ε)n}. (3.33)

In view of (3.32) and (3.33), we have, for r = 2,

S2;r(n; 1) ≤ a17 exp{σ10(ε)n}. (3.34)

Relations (3.32) and (3.34) yield (3.31).
Let us verify that, for r = 3,

S2;r(n; Q∗) ≤ a18e
σ11(ε)n7( ln 1,8

ln 3
−γ)n×

(1 +
2

7
n−3ε(1+ z

ln n
))(

ln 1,8
ln 3

−γ)n. (3.35)
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On the basis of (1.2), (2.5), (2.22), and (3.23) for r = 3, we find

S2;r(n; Q∗) ≤ Q∗
2;r

∑

1≤t1<t2<t3≤4

S2;r;t1,t2,t3(n; 1), (3.36)

where Q∗
2;r = a197

( ln 1,8
ln 3

−γ)n(1 + 2
7n−3ε(1+ z

ln n
))(

ln 1,8
ln 3

−γ)n.
We now show that

max
1≤t1<t2<t3≤4

S2;2;t1,t2,t3(n; 1) ≤ exp{σ12(ε)n}. (3.37)

Indeed, the inequalities Γ(t1) < εn, Γ(t2) < εn, Γ(t3) < εn, 1 ≤ t1 <
t2 < t3 ≤ 4, relations (2.9)–(2.12), and the polynomial formula allow us,
by analogy with (3.33), to obtain (3.37).

Taking (3.36) and (3.37) into account for r = 3, we get the estimate

S2;r(n; 1) ≤ a20 exp{σ13(ε)n}. (3.38)

Relations (3.36) and (3.38) prove (3.35) for r = 3.
Finally, we will convince ourselves that, for r = 4,

S2;r(n; Q∗) ≤ 9( ln 1,8
ln 3

−γ)n exp{σ14(ε)n}n
−a21(1+ z

ln n
). (3.39)

From (2.6), (2.7), and (2.10)–(2.12), we get Γ(l) ≥ 1, l = 2, 3, 4.
Whence, by using (1.2), (2.5), (2.22), and (3.23) for r = 4, we find

S2;r(n; Q∗) ≤ Q∗
2;rS2;r(n; 1), (3.40)

where Q∗
2;r = 9( ln 1,8

ln 3
−γ)nn−a21(1+

z
ln n

).

In view of the inequalities Γ(l) < εn, l = 1, 2, 3, 4, and relations (2.9)–
(2.12), by analogy with (3.33) for r = 4, we find the estimate

S2;r(n; 1) ≤ exp{σ14(ε)n}. (3.41)

Relations (3.40) and (3.41) prove (3.39).
For S2(n; Q∗), using (3.22), (3.24), (3.31), (3.35), and (3.39), we get

S2;r(n; 1) ≤ 9( ln 1,8
ln 3

−γ)nn−a21(1+
z

ln n
)

+ a22 exp{σ15(ε)n}(1 + a23n
−3ε(1+ z

ln n
))(

ln 1,8
ln 3

−γ)n

× (7( ln 1,8
ln 3

−γ)n + 5( ln 1,8
ln 3

−γ)n + 3( ln 1,8
ln 3

−γ)n(5n + 3n + 1)). (3.42)

With the help of (3.15), (3.17), (3.21), and (3.42), we find (3.14). In-
equalities (3.12) and (3.14) prove (3.7).

Thus, using (2.22), we get (3.6) and (3.7), which, together with esti-
mate (3.8), allow us to make conclusion that relation (3.5) is valid. This,
in turn, contradicts the assertion that, with probability 1, there exists a
unique solution x̄(0) of system (1.1) for n → ∞.
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Proof of Theorem 1.2. Sufficiency. We will show that (1.7) yields (3.1).
Indeed, using conditions (1.6) and (1.7), we verify, by analogy with Lem-
mas 2.6 and 2.7, that the relations

3−T

[ε1
n

En ln n
]

∑

t=1

(

n

t

)

2tQ = o(1), n → ∞, (3.43)

3−T

[ε2n]
∑

t=[ε1
n

En ln n
]+1

(

n

t

)

2tQ = o(1), n → ∞, (3.44)

are satisfied. In view of Lemma 2.9, equalities (2.35), (3.2), (3.43), and
(3.44), we get (3.1). The Chebyshev inequalities and (3.1) complete the
proof of the sufficiency.

Necessity. From (1.6), we get the necessity of condition (1.4), because
relation (1.6) is a separate case of (1.2).
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