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     This report is devoted to the unified kinetic approach to the theory of parametric turbulence and to the theory of 
plasma turbulence in strong shear flow across the confined magnetic field. The key point in that theory is the usage 
of the spatial and velocity variables which are co-moving with plasma particles in magnetic and strong electric field.  
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INTRODUCTION 
     It is well known that the presence of the strong elec-
tric field in tokamaks and stellarators affects on the 
plasma turbulence and related phenomena. The applica-
tion of the strong pumping field, used for the rf plasma 
heating in the ion cyclotron frequency range, leads to 
the relative oscillatory motion of plasma species, that 
resulted in the development of the parametric turbulence 
and effects of the anomalous absorption of the pumping 
wave, anomalous heating and diffusion of plasma com-
ponents. The spontaneous appearance of the strong sta-
tionary radially inhomogeneous electric field in the edge 
layer of tokamak plasma leads to the poloidal rotation 
with radially inhomogeneous flow velocity. The low 
frequency plasma turbulence, and therefore the anoma-
lous heat and particles diffusivity, appear suppressed by 
shear flow, that resulted in the formation of the im-
proved energy-confinement regimes in tokamak plas-
mas (e.g. the H-mode regimes). The theory of plasma 
instabilities and turbulence are grounded on the applica-
tion of spectral transforms on time and spatial coordi-
nates and on the investigation of the spectral properties, 
stability and temporal evolution of the separate spectral 
harmonic. In spite of the paramount importance of the 
abovementioned principally different effects of the elec-
tric fields on the plasma turbulence and, as a result, on 
the performance of the controlled fusion, the analytical 
description of the stability and turbulence of the mag-
netized plasma in strong electric field suffer from in-
adequate application of the spectral transforms to plas-
ma flows with non-stationary (as it is in the case of pa-
rametric turbulence) and inhomogeneous (as it is in the 
case edge shear flows) velocities. As a rule, in the ki-
netic theory of the magnetized plasma in electric field, 
the transformation to the reference frame, moving with 
the nonstationary or nonuniform equlibrium fluid veloc-
ity, but leaving unchanged spatial (laboratory) coordi-
nates, is used. As a result, the nonstationarity and spatial 
inhomogeneity, introduced by flow velocity, remain in 
Vlasov equation and different dubious approximations 
were used for the application of the Fourier transforms 
to Vlasov and Maxwell equations. Here, we prove, that 
the application the "physical" approximations, that were 
used for the performance of the spectral transforms in 
such equation, make the results obtained senseless. We  
 

 
 
display, that the transformation both  velocity  and  spa-
tial  coordinates  in  
Vlasov equation to convective reference frame is neces-
sary for the excluding the inhomogeneities, introduced 
by external electric field from Vlasov equation  
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and performing the spectral transforms without addi-
tional approximations. 

1. KINETIC THEORY OF PARAMETRIC 
PLASMA TURBULENCE 

     Here we compare two approaches to the theory of 
parametric instabilities, which were developed without 
the transformation to the convective spatial coordinates 
[1], and with transformation to convective (oscillatory) 
spatial coordinates [2]. The Fourier transform ( , )ϕ ωk       
of the perturbed potential, performed in the laboratory 
frame, is governing by the equation[1] 
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In Eq.(2) ~a k rα αδ  and rαδ  is the displacement of the 
particle of species α  in pumping field 

0 0 0( ) cos( )t tω=E E . The application of the transformtion 
of the Vlasov equation (1) to the oscillatory ion frame of 
reference [2] gives other equation for the Fourier trans-
form ( , )iϕ ωk  of the perturbed potential, [2] 
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0( , ) 0,i mϕ ω ω× + =k                                (3) 
where iea ~ k rδ  and e ir r rδ δ δ= −  is the displacement 
of the electrons relative to ions in pumping field. It fol-
lows from Eqs. (2), (3), that the possible growth rate of 
the parametric instabilities will be maximal, when the 
arguments of the Bessel functions are of the order of 
unity.  For   Eq. (2),  the  analysis of  the  case of  aα ~ 1  
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requires the solution of the infinite set of equations, but 
analytically only the case of small aα  for this equation 
was treated yet [1], that gives the negligibly small 
growth rate[3] and main physical processes appear over-
looked. In contrary, Eq. (3) admits the treating the case 
of iea ~ 1and receiving for the ion cyclotron kinetic 
parametric instability[2] rather general equations for the 
frequency 
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     The transformation of the Vlasov equation to oscilla-
tory coordinates was the decisive step in the develop-
ment of the weak parametric turbulence[2], which re-
quires the knowledge of the spectral properties of the 
instabilities for any values of the wave numbers.  
 

2. KINETIC THEORY OF PLASMA SHEAR 
FLOWS 

     Now, we display, how effective is the transformation 
to convective-sheared coordinates in the kinetic theory 
of plasma shear flows stability. We consider the case of 
plasma shear flow in linearly changing electric field, 

0 0( ) = ( / ) xE x x∂ ∂E r e  with 0 / =E x const∂ ∂ . In that 
case 0 0 0 0( ) = ( ) = ( / )( / ) =y y yV x c B E x x V x′− ∂ ∂V r e e e  
with spatially homogeneous, 0 =V const′ , velocity shear. 
The transformation of the Vlasov equation to convected, 

0= , = , =xs x ys y zs zv v v v V x v v′+ , and sheared, 

= ,sx x  0= ,sy y V tx′+ =sz z , coordinates excludes the 
spatial inhomogeneity introduced by inhomogeneous 
electric field to the Vlasov equation[4,5] 
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     In that case, the Fourier transformation of the Vlasov 
equation over spatial sheared coordinates is performed 
exactly without application of the dubious approxima-
tions such as the "slow" spatial variation of the flow 
velocity[6,7]. With leading center coordinates ,X Y , 
determined with convective-shearing coordinates by the 
relations 
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the Vlasov equation (1) obtains the canonical form 
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in which electrostatic potential is determined by the 
Fourier transform over the sheared coordinates 

, ,s s sx y z , determined through the leading center coor-
dinates, 
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where ( ) ( )22 2
0= ,xs ys ysk t k V tk k⊥ ′− +  and 

0tan = / ( )ys xs ysk k V tkθ ′− . It follows from Eq. (6) that 
finite Larmor radius effect of the interaction of the 
perturbation with time independent wave numbers 

, ,xs ys zsk k k  with ion, Larmor orbit of which is observed 
in sheared coordinates as a spiral continuously stretched 
with time, appears identical analytically to the 
interaction of the perturbation with wave numbers 

0 , ,xs ys ys zsk V tk k k′−  with ion, which rotates on the 
elliptical orbit that is observed in the laboratory frame. 
The time dependence of the finite Larmor radius effect 
is the basic linear mechanism of the action of the 
velocity shear on waves and instabilities in plasma shear 
flow. 
     One can come to these conclusions even without the 
transformation to the sheared coordinates, performing 
only the transformation to convective coordinates, as it 
is done usually (see, for example Refs. [6, 7]). In that 
case the Vlasov equation becomes 
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Usually (see, for example Refs.[6,7]), the approximation 
of the "slow" spatial variation of the flow velocity is 
applied. Then, velocity is absorbed into the identical for 
both plasma species Doppler shifted frequency [6,7] 

0= ( )D yk V xω ω − , and, in fact, the velocity shear is 
excluded from the subsequent analysis. If we apply, 
however, the Fourier transform directly to (7) over the 
spatial coordinates in the laboratory frame (wave 
numbers are denoted as , ,y y zk k k ) without the 
application of the approximation of the "slow" spatial 
variation of the flow velocity, i.e. 

 
0

0

( )

( ) = ( , ) ,

y c sy
x sx

c x
sy s

f f f
V k i f v

t k v
f e F

V v t
v m

α α α
α α

α α α
α α α

α

ω

ω ϕ

∂ ∂ ∂′− − +
∂ ∂ ∂

∂ ∂′− + −
∂ ∂

kv

k k
v

 (8)  

we obtain for fα  the solution 

0= ( , , , )x y y zf f k V tk k k tα α ′+ , where 0 =x y xk V tk K′+ , 
where xK  as the integral of Eq. (8) is time independent. 
It reveals that the wave number components xk  and yk  
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have to be changed in such a way that 0x yk V tk′+  leaves 
unchanged with time. Such solution to Eq. (8) for fα  
can't be presented in the laboratory coordinates in a 
form, in which the time and spatial dependences are 
separable, as it is for the normal mode solutions of Eq. 
(7) obtained with assumption of the "slow" spatial 
variation of the flow velocity[6, 7]. If we use, however, 

0=x x yk K V tk′−  in Eqs. (4) and (5), we obtain for the 
electrostatic potential the presentation (5), and we 
obtain Eq.(4) for fα , with time independent =x xsK k , 

=y ysk k , =z zsk k . 
The obtained results prove, that the solution of the 
Vlasov equation in the form of the separate Fourier 
harmonic with time independent wave numbers may be 
obtained only in convected-sheared coordinates. That 
solution reveals in the laboratory frame as a shearing 
mode with time dependent x -component of the wave 
number, 0=x xs ysk k V tk′+  

The oversimplification of the problem, which 
resulted from the application of the assumption of 
"slow" spatial variation of 0 ( )V x , leads to the 
overlooking of that principal effect of shear flow. It is 
obvious, that the time dependence in xK  may be 
neglected only in the case of negligible velocity shear, 
or when the very short evolutionary time is considered. 
Really, for yk  ~ xk  and 0V ′  ~ γ  for time  t  > 1γ −  the 
we have 0yk V t′  > xk  in the integral 0=x x yK k V k t′+ . 
Therefore the assumption of "slow spatial variation of 
flow velocity" is not valid for the investigations of the 
effects of shear flow in real experiments, where 
observed velocity shearing rate may be of the order or 
above of the growth rate of the instability and the time 
of the observations is of the order of the inverse growth 
rate or longer. 

 

CONCLUSIONS 
     The joint transformation of the velocity and spatial 
coordinates in Vlasov equation from laboratory to oscil-
latory set in the case of the parametric turbulence in the 
field of the strong pumping field, as well as the trans-
formation from laboratory to convected-sheared coordi-
nates in the case of strong shear flow in the crossed 
magnetic and inhomogeneous electric field, is the un-
avoidable for the proper treating the spectral properties 
of plasma in inhomogeneous non-stationary electric 
field. 
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ЗАМАГНИЧЕННАЯ ПЛАЗМА В СИЛЬНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ: 

ОТ  ПАРАМЕТРИЧЕСКОЙ ТУРБУЛЕНТНОСТИ ДО УЛУЧШЕННОГО УДЕРЖАНИЯ 

В.С. Михайленко, В.В. Михайленко 

     Статья посвящена единому подходу к кинетической  теории параметрической турбулентности и к теории 
турбулентности сильного сдвигового течения плазмы поперек удерживаемого магнитного поля. Ключевым 
моментом в этой теории является использование как скоростей, так и пространственных координат, опреде-
ленных в системе координат, движущейся вместе с частицами в магнитном и электрическом полях. 

 
ЗАМАГНІЧЕНА ПЛАЗМА В ПОТУЖНОМУ ЕЛЕКТРИЧНОМУ ПОЛІ: 

ВІД ПАРАМЕТРИЧНОЇ ТУРБУЛЕНТНОСТІ ДО ПОКРАЩЕНОГО УТРИМАННЯ 

В.С. Михайленко, В.В. Михайленко 

     Стаття присвячена єдиному підходу до кінетичної теорії параметричної турбулентності та до теорії 
турбулентності потужної зсувної течії плазми поперек утримуваного магнітного поля. Ключовим моментом 
у цій теорії є використання як швидкостей, так і просторових координат, визначених у системі координат, 
що рухається разом з частинками у магнітному та електричному полях.
 


