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The charged particle motion problem in electromagnetic field of magnetic pumping under Chrenkov and cyclo-
tron resonance conditions is solved in drift approximation. The wave field is produced by alternating surface azi-
muthal current, modeling the current of solenoidal antenna, which use is considered within the frames of a devel-
oped ICR-method of isotope separation. The drift motion equations are derived and their three first integrals are
found at arbitrary values of Larmor radius. It is shown that the increasing of a particle Larmor radius involves the
increasing of radius of the Larmor center, i.e. involves drift of heated particles to plasma edge. During Larmor gyra-

tion these ions transit near to a system axis.
PACS: 52.40.Fd; 52.50.Qt

Interaction of particles with a wave is a basis for
calculation of effect of a selective heating of ions in a
developed ICR-method of isotope separation [1]. In this
paper the solution of a problem about a charged particle
motion in the homogeneous magnetic field and in the
vortex electromagnetic field of a wave of magnetic
pumping of small amplitude under Cherenkov and cy-
clotron resonance conditions is presented in the drift
approximation.

1. WAVE OF MAGNETIC PUMPING
The wave is produced by the azimuthal surface cur-
rent j, = j,0(r —a)cos(k,z—of) modeling the current

in solenoidal antenna. Its usage is considered within the
method of ICR-separation [1]. The wave field inside the
solenoid (7 < a ) has components £, H,, H_ [2]:

E, =-CI,(Ar)sin(k,z — wt),

k.c A
H. = C=S 2 (Ar)cos(k.z - o), (1)
o k,
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H, =C—==1I (Ar)sin(k,z—-ot) .
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Here C=——, E = i aK (Aa)l,(Aa) — is the
ey T2 JoaK (Aa)I, (Aa)
amplitude of azimuthal electric field near the solenoid
2
(r=a), N’=k —0)—2>0, N, = ke >> 1.
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2. DERIVATION OF DRIFT EQUATIONS

We derive the equations of particle drift motion in
the field (1) using the method [3]. Introducing a com-
plex variable u =x+iy =rexp(ip) we write equations
of motion in this variable:

U+iou=

e H H
=i| —E -exp(io)—o . —Zu+w0 . —z-exp(i 2
[ 27 Fo p(ie) - o, B, "B, p( @)}( )
s loy
Mc
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Here o, =eB,/Mc >0 —isthe cyclotron frequency
of a particle. We search he solution of equations (2) in
the form

u =rexp(io) = R-exp(iB) +p - exp(id) 3)

Particle motion is described by cylindrical coordinates
of the Larmor center R, 0, coordinates of a particle
on the Larmor circle p, $=9;, -t (9, - initial phase

of Larmor rotation) and longitudinal variables
z=2z, +J.;vzdt , V..
According to (3) vectors rexp(ip), R-exp(i0),

p-expli(9, —w,?)] form a triangle. Taking this fact into

account we apply the Graf summation theorem for Bes-
sel functions [4], having in our case the form

I, (Ar)exp(ip) =
p=to

= 2. L, (AR (Ap)exp (10— p(9, =0)+ poo, 1]}, (4)

to the terms in the right-hand sides of equations (2) and
express them in variables R,0,p,9,,z,v, .

We find the approximate solution of equations (2)
supposing that a wave amplitude is small
(eE,/ (M, r) << o, ) and a particle moves under Che-
renkov or cyclotron resonance conditions with a pump-
ing wave
o =+kv, +no, +Ao, n=+L2,13, .., |Ae|<<o,. (5)

In the absence of wave the coordinates

R,0,p,8,,z,,v, are the integrals of motion. In the pres-

ence of wave of small amplitude the right-hand sides of
equations (2) contain small fast and slow oscillating
summands. Neglecting the fast oscillating summands
and taking into account only the slow oscillating ones
(i.e. using the method of averaging), we obtain the equa-
tions of particle drift motion:
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Here ¥, =n(Y, - 6) +(w—now,)t—k z —is a resonance
phase slowly changing under conditions (5). Using the
equations for 6 and 3 in (6) we obtain the equation for
Y in the form

‘Pn = (o)—no)a. —kzvz)—

e no 1 d dl (Ap)
% "N (AR — Ap) L +
o, o { (Ap)d(Am[( )dw)}

L P 4L, (AR) dl,(Ap)

)
R d(AR) d(Ap)

The equations for R , p , ¥ v, (6), (7) form the

closed set of equations. The phases 6 and 3 are deter-
mined by the solution of this closed set.

3. INTEGRALS OF DRIFT MOTION

n o

Combining the equations for p and R we find one
first integral of the equations set (6):

2P
R -p*=C =—2 | 8
p ' Vo (3

ci

It determines the form of drift trajectories in Rp plane.

Radius of solenoid

Fig. 1. Drift trajectories in Rp plane. Line R+p=a
corresponds to a radius of solenoid, line R =p is the
asymplote of hyperbolas
The trajectories have the form of hyperbola (Fig. 1)

along which the ions drift under action of the wave field
of magnetic pumping (1) under cyclotron resonance

ISSN 1562-6016. BAHT. 2013. Nel(83)

conditions (5). As it is seen from integral (8), the form
of drift trajectories does not depend on the number of
cyclotron harmonic #n on which the resonance is real-
ized. This is a consequence of axial symmetry of a wave
field (1) and conservation of the generalized angular
momentum F, .

If the values of radius of Larmor center R and Lar-
mor radius p satisfy the condition R+p <a, then the
particle, moving on Larmor trajectory, remains inside
the cylinder » =a, on which the solenoidal antenna is
placed, and interacts with a wave of magnetic pumping.
If coordinates of a particle satisfy the condition
R+p=a, then particle falls on the antenna during
Larmor rotation and stop the interaction with a wave.

Combining the equations for R and v. we find one
more first integral of the equations set (6), determining
drift trajectories in Rv, plane:

v, —(0.k. /2n)R*=C, . )
noymal R?_ anomalous
[)Qppfe; PARE S L{Oppﬁc

c,f(ecf w?‘* 0

Y 7

c]‘]‘ecr n /0 /

Fig. 2. Drift trajectories in R’v_ plane. Along y axis
the value R* varies. Along x axis the longitudinal
velocity varies in frame of reference, moving with a

wave (v, —o/k_). The cyclotron resonances (5) take

place only if the approximate equality is fulfilled

(vz -0/ kz) =-n-o,/k, .Integer numbers n along x

axis specify the number of resonance cyclotron har-
monic. Positive n correspond to a normal Doppler ef-
fect, negative n — to anomalous Doppler effect

At k_ # 0 the trajectory has the form of parabola in

Rv_ plane. More accurately, they are the segments of

parabola placed near velocity values, where the reso-
nance condition (5) is fulfilled. In Fig. 2 the trajectories

are presented in axes R’v. . In these axes the trajectories
are the straight line segments.

At kz =0 the trajectories degenerate into the lines
v, =const . In this case drift equations for R, p and
¥, form the closed set.

The third first integral is a Hamiltonian of a particle
in the magnetic field and in the field of a pumping
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wave. Its form can be determined by combining the
equations (6) or by averaging the exact expression of
Hamiltonian. Finally, we obtain its form:

H=H,+H, =C,. (10)

Here
2

M 2. 2

20P P (11)
2 2M

is the well-known unperturbed (without pumping wave)

Hamiltonian of a particle and

®

H,=

H =e

-CI, (AR)pI; (Ap)cos'P, (12)
(O]

is the addition describing the interaction of a particle
with a pumping wave. It should be noted, that expres-
sions (10) — (12) determine Hamiltonian function rela-

tive to canonically conjugated variables (J 2 ,9) ,
(Jp,—S), (p..2), Jo=(/2) Mo, R,
J,=(1/2)Mo,p* are the known adiabatic invariants

where

of a particle in magnetic field.
CONCLUSIONS

The drift equations are derived and its integrals are
found for particle moving in a homogeneous magnetic
field and in a vortex wave field of magnetic pumping
under Cherenkov and cyclotron resonance conditions.
The drift equations (6), (7) and integrals (8)-(12) are
obtained at arbitrary value of particle Larmor radius p .

The found integrals (8)-(12) make it possible to inte-
grate on time the equations of drift motion (6), (7), to
build trajectories in a phase space R, p,v,,'¥, and thus

to solve the motion problem completely.

As it is seen from integrals (8), (9) the form of drift
trajectories does not depend on amplitude and the distri-
bution of the wave field on radius. The drift velocities,
of course, depend on these factors.

The integrals (8), (9) coincide with correspondent
integrals of the drift motion of a particle in the field of a
running along magnetic field potential wave having
azimuthal number m =0 [3].

As results from the integral (8), the increasing of a
particle Larmor radius p involves the increasing of

radius of the Larmor centre R, i.e. pumping wave in-
volves drift of heated particles outside, to plasma edge.
This peculiarity explains the observed radial drift of
particles interacting with a pumping wave in numerical
calculations [4, 5].
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JPEM®OBOE JIBUKEHUE 3APS)KEHHOM YACTHUIIHI B IIOJIE BOJIHBI MATHUTHOM
HAKAYKH B YCJIOBUAX YEPEHKOBCKOI'O 1 IUKJIOTPOHHOT'O PE3OHAHCOB

B npeiioBoM mpubamKeHun pelieHa 3aqada o JIBIKSHUH 3apsHKEHHOM 4acTHIbI B 1TOJIE BOJHBI MarHUTHOW Ha-
Ka4yK{ B YCIIOBMSIX UE€PEHKOBCKOTO M IIMKJIOTPOHHOIO pe3oHaHCOB. Ilojie BONHBI co3/maeTcs MOBEPXHOCTHBIM Iepe-
MEHHBIM a3UMYTaJIbHBIM TOKOM, MOJAEIMPYIOUIUM TOK COJCHOUAANBHOM aHTEHHBI, MCIOJIb30BaHHE KOTOPOH pac-
cMaTpuBaeTcsl B paMKax paspadareiBaemoro VIIP-merona pa3aeneHus 3JeMEHTOB M U30TONOB. BriBeneHs! ypaBHe-
HUSI APEeH(OBOTO IBIXKEHHMS, CIPABEUIMBBIE IIPH MPOU3BOIBHON BETMYMHE JTAPMOPOBCKOTO pajnyca, W HaHICHBI
TPHY WX MEPBBHIX MHTErpaia. [lokazaHo, 4TO yBeTHMUCHNE JapMOPOBCKOTO pajryca JYacTHIIBI O AEHCTBHEM BOJIHBI
HaKadK{ CONPOBOXK/IAETCS YBEIMUCHNEM PagHyca €€ JJApMOPOBCKOTO IEHTPA, T.€. IApeH(oM HarperTsiX 4acTHI] Ha
nepuepuro mia3Msl. [Ipy 1apMOPOBCKOM BpaIlleHUH ATH HOHBI IPOXOIAT BOINU3M OCH CHCTEMBI.

JPEM®OBUI PYX 3APSI’KEHOI YACTKHA B 1OJII XBAJII MAI'HITHOI'O HAKAYYBAHHSA
B YMOBAX YEPEHKOBCBKOI'O U IMKJIOTPOHHOI'O PE3OHAHCIB

IO.M. €niceecs, K.M. Cmenanos

VY npetidoBoMy HaONMKEHHI BUPINIEHO 33/1a4y MPO PYX 3apsiHKEHOT YaCTKW B IOJIi XBWJII MarHiTHOTO Hakauy-
BaHHS B YMOBaX YEPEHKOBCHKOTO i IMKJIOTPOHHOTO pe30HaHCIB. [losie XBUIII CTBOPIOETHCS TTOBEPXHEBUM 3MIHHUM
a3UMYTaIGHUM CTPYMOM, IIO MOJIEIIIOE CTPYM COJICHOIJaIbHOI aHTEHH, BUKOPUCTAHHS SIKOI PO3TIIAJA€ThCs B paM-
Kax po3poOmoBaHoro II{P-merony po3ainenHst eneMeHTiB i i30TomiB. BuseneHi piBHAHHS apeiidoBoro pyxy crpa-
BEJUIMBI TIPY JOBUIbHIN BETMYMHI TJApMOPOBCHKOTO pajiyca, i 3HalIeHO TpH iX mepmux inTerpana. IlokazaHo, mo
30UTBIICHAS JIAPMOPOBCHKOTO pajiiyca YacTKH ITiJ] Ai€10 XBIIII HaKadyBaHHS CYIIPOBOKYETHCS 30LIBIICHASM pai-
yca il JIapMOpPOBCBHKOTO IIEHTpa, TOOTO IpeiihoM HarpiTHX 9acTok Ha mepudepiro miazmu. [Ipu mapmMopoBchKOMY
obepTaHHI 1 10HH TPOXOASATH MOOJIU3Y OCI CUCTEMH.
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