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INTRODUCTION 
The quantum Zeno effect has been described in 

theoretical work [1]. Later this effect has been verified 
by experiments. The similar effect – the effect of 
quantum whirligig has been suggested in work [2-3]. 
Originally it has been formulated for quantum systems 
but later it appeared that the effect can be efficiently 
used for stabilization of classical systems too. The 
mechanism is very simple. Let’s formulate the basic 
requirements which are necessary for realization of this 
effect.  Assuming that we have a system state we want 
to stabilize and know characteristic life time of this state 
( LT ), it is necessary to involve the system in a fast 
changing process (e.g. a periodic process), with 
characteristic time (period) tΔ  essentially smaller than 

LT . This process can stabilize the system’s state. An 
elementary example of such stabilization is a children's 
toy whirligig stabilized in the vertical position. The 
rotation period of the whirligig is much smaller than the 
time necessary for it falling from the vertical position in 
absence of rotation. ( )LT t>> Δ .  

Below we show that this mechanism can be 
effectively used in plasma physics to suppress various 
instabilities. The conditions for stabilization of charged 
particles flow in plasma are formulated in section 2, 
when section 3 derives the conditions to suppress the 
decay and the explosive instability.  

 
1. CHARGED PARTICLE BEAM 
STABILIZATION IN PLASMA 

In this part we consider the following most simple 
model. Let we have a plasma cylinder ( 0 pr R< < ). It is 
placed in a metal cylinder of the same radius. All 
system is subjected to a strong external longitudinal 
magnetic field. The beam passes along the axis of the 
plasma cylinder. The beam radius coincides with the 
plasma radius. The cylinder has gaps for connection 
with an external electrodynamic structure (waveguide). 
A spiral with radius HR  can be an example of such 
structure. Frequency and wave vector of the eigenwave 
of this structure should coincide with the frequency and 
the wave vector of a wave excited by the beam in the 
plasma. The system of the equations which describes 
this system consists of the hydrodynamic equations for 
particles of the plasma and the beam and   Maxwell 
equations    for     fields.   One   can look for  solutions 
in the form ~ ~ exp( )k k zn v ik z i tω− + , 

~ exp( ) ( )j zE ik z i t H rω− +  which then lead to the 
following dispersion equation:  
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where kμ  − is the connectivity factor of the fields 

zk Vω ω∗ = − and ( )2 2 2 2/n s zk R kλ⊥ = −  is the transversal 
wave vector of the wave in the external structure. 

One can see that in absence of the connection 
between the plasma fields and the external structure 
fields ( 0jμ = ) one gets the usual dispersion equation of 
a plasma-beam system.  On the contrary, if the beam is 
absent ( 0bω = ) we get the dispersion equation which 
describes energy exchanging between plasma waves and 
the waves of the external structure. Frequency of such 
exchanging is equal to 1 / 4μμΩ = . Let’s assume that 
when this frequency is lager then the increment of the 
beam-plasma instability, such instability can be 
suppressed. To check this assumption we consider the 
values of the parameters close to the limit of beam-
plasma instability: ~ ~p zk Vω ω , 

 ( ) ( ) ( )p zk V k cω ω ω ω δ⊥− = − = − =  .                     
Thus, for the deviation δ one gets the following third 

order algebraic equation:  
3 2

1 / 4 / 2 0b pδ μμ δ ω ω− − = . 

This equation has three roots. The instability does 
not develop if all these roots are real. The condition for 
only real roots to appear (a condition to suppress the 
instability) is: 

( )1/32
1 / 4 / 2b pμμ ω ω>  .                                (2) 

The decrease of the connectivity factor (or the 
increase of the beam density) leads to two real roots 
disappearing. This leaves only one real root when two 
complex conjugated roots appear and describe the 
instabilities increments.   

 
2. STABILIZATION OF RADIATION FLOWS 

IN PLASMA 
In this section we show that not only the flow of the 

charged particles in plasma but also the flow of 
radiation can be also stabilized. We illustrate this result 
by the three-wave interaction example. The processes of 
three-wave interaction play a fundamental role in the 
plasma physics. Below we show that if one of the waves 
participating in a three-wave interaction participates in 
some additional periodic process (stabilization process) 
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the instabilities can be suppressed. The elementary 
system of the equations which describes such processes 
can be presented in the following form: 
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This system describes interaction of four waves. 
Two of them (zero and the third in our notation) are 
connected with each other through the linear connection 
factor μ . There is the periodic exchange of energy 
between the basic wave and the stabilization wave if 
other waves are absent. Frequency of such exchange is 
equal to / 2μΩ = . The system (3) at 0μ =  describes 
ordinary three-wave interaction of the waves with the 
increment of the decay instability 0 (0)V Aδ = . Let’s 
notice that if we change the sign before the first term in 
the right side of the first equation in (3), then such 
system describes the explosive instability.  

 Below we show that the addition of the third wave 
( 3A ) can suppress both the decay processes, and the 
process of explosive instability. It is necessary to notice 
that system (3) considers the connection between the 
zero-index wave and the stabilization wave (third) only. 
The same result can be obtained when any other wave 
(first or second wave) is involved in the process of the 
stabilizing interaction. 

According to general ideology we assume that decay 
instability is suppressed as soon as the 
condition 0/ 2 (0)V Aμ >  is satisfied. The left side of 
this inequality is the frequency of the energy exchange 
between the stabilizing wave and one of the waves 
participating in the three-wave interaction. The right 
side is the increment of the decay instability. We 
analyze system (3) numerically. For that it is convenient 
to introduce the following parameters and new real 
variables: 

0 0 1 1 2 3 2 4 5 3 6 7, , ,A x ix A x ix A x ix A x ix= + = + = + = +
/ 2Vε μ≡  ,   Vtτ ≡ . 

The usual decay process is observed if the 
stabilizing wave is absent ( 0ε = ). The decay instability 
is stabilized in all cases when the wave 3A  (stabilization 
wave) is present and the condition 0/ 2 (0)V Aμ > is 
satisfied.  

Stabilization of explosive instability. It is worth 
noticing that stabilization can be achieved for the 
explosive instability case too. Really, in Figs. 1-3 the 
dynamics of wave amplitudes is presented 
( 0 2 6(0) 0.1, (0) 0.001, (0) 0.01x x x= = = ) at explosive 
instability in absence stabilization wave (see Fig. 1), and 
also dynamics of these amplitudes in the presence of a 
stabilization wave (see Fig. 2-3). It is visible from these 
figures that already at values of parameter 0.09ε =  full 
stabilization of explosive instability have been 
observed.  

 
 

 
Fig. 1. Explosive instability at  0ε =  

 
Fig. 2. Suppression of explosive at 0.09ε =  

 
Fig. 3. Suppression of explosive at 0.09ε =  

 
Only the basic wave ( 0A ) and the stabilization wave 

( 3A ) show periodic oscillations and exchange energy 
between each other. Other waves almost not change.  
However at 0.08ε = the explosion still appears but its 
occurrence is substantially delayed (to times of more 
then 400). 
  

3. PARADOX OF TWO SOLUTIONS 
The possibility of the stabilization of a quantum 

mechanics system has strict justification for an induced 
processes only (see [1]). It is reasonable to expect that 
spontaneous transitions can be stabilized under the same 
conditions. However, here one faces a contradiction. 
The solution of the quantum mechanics equations using 
usual perturbation theory does not provide such 
stabilization. There is a paradox. To illustrate this 
situation we consider the particular case of the 
synchrotron radiation stabilization.  The system of the 
equations, which describe the dynamics of the 
amplitudes of the synchrotron radiation wave functions 
with the presence of the stabilizing perturbation, can be 
written as follows:  

( )0 1 exp /i A V A i E t+= − ⋅Δ ⋅&h h     2 21 1i A V A= ⋅&h  

( )1 0 12 2exp /i A V A i E t V A−= ⋅Δ ⋅ + ⋅&h h                     (4) 

Here 3
0 1V U d xψ ψ+ + += ∫ ; 3

1 0V U d xψ ψ− + −= ∫ ; 

3
12 1 2V U d xψ ψ+= ∫ ; 12 21V V= ; 1A  − amplitude of wave 

function of the excited state; 0A  − amplitude of wave 
function of the ground state; 2A  − amplitude of wave
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function of an additional state were the transitions as a 
result of the induced transition caused by stabilizing 
perturbation occur. 

The system of equations (4) differs from the one 
presented in [3] only by presence of the additional 
equation for 2A , and also by the additional term in the 
right part in equation for 1A . This additional equation 
and the additional term describe the dynamics of the 
induced transitions between the basic (first) level and 
additional (second) level. The operators U ±  are defined 
in [4]. The operator U describes the potential of external 
periodic perturbation.  

The system (4) allows the existence of two 
essentially different solutions. Let’s consider the first, 
strict solution. The solution in the spirit of accepted in 
the quantum mechanics. We have the induced process 
caused by presence of external perturbation. This 
process is much faster than the processes connected 
with the spontaneous transitions. Therefore in zero order 
approximation we can obtain such solution: 

( )1 cosA t= Ω⋅ ( )2 sinA i t= − Ω⋅ ,                   (5)                                                                   
where 12 /VΩ = h . 

According to the perturbation theory, one must 
substitute these solutions to the system (4). There is no 
stabilization if one does this. The spectra of spontaneous 
radiation slightly changes and there is the splitting of 
the spectra.  In addition, there is some periodic 
modulation of the probability density. These changes do 
not significantly affect the life time of the levels. Let's 
consider the second solution. For this purpose we 
introduce the following characteristic times: 

/ 2t πΔ = Ω  the characteristic time of the transition 
from main stare to new state under the influence of the 
stabilizing perturbation and LT  the life time of the 
excited state in the absence of the perturbation 
( 2

0/LT R r mc γ= ⋅ ⋅ ⋅h , where 0r  − electron’s classical 
radius; R  − the radius of electron’s orbit in 
synchrotron). Let’s assume / 1Lt TΔ << . Then the 
lifetime of the excited state is tΔ  and the probability of 
the transition from the excited state to the ground level 

under the influence of zero fluctuations is proportional 
to the square of the ration / Lt TΔ . Thus the probability 
to stay on the excited level can be estimated by the 
expression: 

( )2~ 1 / Lw t T⎡ ⎤− Δ⎣ ⎦ .                                       (6) 

The system returns to the initial excited level after 
the time 2 tΔ . It occurs as the result of the induced 
transitions.  The probability to stay on this excited level 
during next interval tΔ  can be estimated by the same 
formula (6). All these processes of transition are 
independent. Therefore the probability to remain at the 
excited level is proportional to the product of the 
probabilities to remain at the excited level in each of 
these intervals tΔ . After time LT  the probability to 
remain at the excited level can be estimated by the 
formula: 

~ ( / 2 )n Lw exp t TΔ . 

One can see that at / 0Lt TΔ → the probability to 
remain at the excited level converge to unit.        

Therefore, we see that two ways of solving the 
equations (4) lead to two solutions which contradict 
each other. We choice second solution because only it 
corresponds to quantum Zeno effect.  
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СТАБИЛИЗАЦИЯ КЛАССИЧЕСКИХ И КВАНТОВЫХ СОСТОЯНИЙ 

В.А. Буц 

Показано, что механизм квантовой юлы может быть эффективно использован для стабилизации 
классических систем. В частности, найдены условия стабилизации потоков заряженных частиц и потоков 
излучения в плазме. 

 
 

СТАБІЛІЗАЦІЯ КЛАСИЧНИХ ТА КВАНТОВИХ СТАНІВ 

В.О. Буц 

Доведено, що механізм квантової дзиґи може бути ефективно використовуватися для стабілізації 
класичних систем. Зокрема, знайдені умови стабілізації потоків заряджених часток та потоків 
випромінювання в плазмі. 
 


