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It is shown that the mechanism of quantum whirligig can be successfully used for stabilization of classical
systems. In particular, the conditions for stabilization of charged particles and radiation fluxes in plasma are found.
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INTRODUCTION

The quantum Zeno effect has been described in
theoretical work [1]. Later this effect has been verified
by experiments. The similar effect — the effect of
quantum whirligig has been suggested in work [2-3].
Originally it has been formulated for quantum systems
but later it appeared that the effect can be efficiently
used for stabilization of classical systems too. The
mechanism is very simple. Let’s formulate the basic
requirements which are necessary for realization of this
effect. Assuming that we have a system state we want
to stabilize and know characteristic life time of this state
(T,), it is necessary to involve the system in a fast

changing process (e.g. a periodic process), with
characteristic time (period) Af essentially smaller than
T, . This process can stabilize the system’s state. An

elementary example of such stabilization is a children's
toy whirligig stabilized in the vertical position. The
rotation period of the whirligig is much smaller than the
time necessary for it falling from the vertical position in

absence of rotation. (7, >> Ar).

Below we show that this mechanism can be
effectively used in plasma physics to suppress various
instabilities. The conditions for stabilization of charged
particles flow in plasma are formulated in section 2,
when section 3 derives the conditions to suppress the
decay and the explosive instability.

1. CHARGED PARTICLE BEAM
STABILIZATION IN PLASMA

In this part we consider the following most simple
model. Let we have a plasma cylinder (0<r<R)). Itis

placed in a metal cylinder of the same radius. All
system is subjected to a strong external longitudinal
magnetic field. The beam passes along the axis of the
plasma cylinder. The beam radius coincides with the
plasma radius. The cylinder has gaps for connection
with an external electrodynamic structure (waveguide).
A spiral with radiusR,, can be an example of such

structure. Frequency and wave vector of the eigenwave
of this structure should coincide with the frequency and
the wave vector of a wave excited by the beam in the
plasma. The system of the equations which describes
this system consists of the hydrodynamic equations for
particles of the plasma and the beam and Maxwell

equations for fields. One can look for solutions
in the form n, ~v, ~exp(—ik,z +iwt),
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E, ~exp(—ik.z+iwt)H(r) which then lead to the

following dispersion equation:
2 2 2
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where g, — is the connectivity factor of the fields
o =o-kVand k; = (lnz /R —kzz) is the transversal

wave vector of the wave in the external structure.

One can see that in absence of the connection
between the plasma fields and the external structure
fields (; =0) one gets the usual dispersion equation of

a plasma-beam system. On the contrary, if the beam is
absent (w, =0) we get the dispersion equation which

describes energy exchanging between plasma waves and
the waves of the external structure. Frequency of such

exchanging is equal to Q= ./zu, /4. Let’s assume that

when this frequency is lager then the increment of the
beam-plasma instability, such instability can be
suppressed. To check this assumption we consider the
values of the parameters close to the limit of beam-
plasma instability: o ~aw, ~kV,

(a)—a)p) =(o—kV)= (a)—|ki|c) =0 .

Thus, for the deviation J one gets the following third
order algebraic equation:

53—/1;115/4—5020)1,/2:0.

This equation has three roots. The instability does
not develop if all these roots are real. The condition for
only real roots to appear (a condition to suppress the
instability) is:

Juu 14> (0w, 12)" . 2)

The decrease of the connectivity factor (or the
increase of the beam density) leads to two real roots
disappearing. This leaves only one real root when two
complex conjugated roots appear and describe the
instabilities increments.

2. STABILIZATION OF RADIATION FLOWS
IN PLASMA

In this section we show that not only the flow of the
charged particles in plasma but also the flow of
radiation can be also stabilized. We illustrate this result
by the three-wave interaction example. The processes of
three-wave interaction play a fundamental role in the
plasma physics. Below we show that if one of the waves
participating in a three-wave interaction participates in
some additional periodic process (stabilization process)
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the instabilities can be suppressed. The elementary
system of the equations which describes such processes
can be presented in the following form:

d4, H dAd, _u

0 yaA -+, =g 3
dt i dt 2iA" )
dA, . dA \

s B 7778 2opg4,.

0 4,4, 7 [ 4,

This system describes interaction of four waves.
Two of them (zero and the third in our notation) are
connected with each other through the linear connection
factor 4. There is the periodic exchange of energy

between the basic wave and the stabilization wave if
other waves are absent. Frequency of such exchange is
equal to Q= /2. The system (3) at =0 describes

ordinary three-wave interaction of the waves with the
increment of the decay instability & :V|A0(O)|. Let’s

notice that if we change the sign before the first term in
the right side of the first equation in (3), then such
system describes the explosive instability.

Below we show that the addition of the third wave
(4;) can suppress both the decay processes, and the

process of explosive instability. It is necessary to notice
that system (3) considers the connection between the
zero-index wave and the stabilization wave (third) only.
The same result can be obtained when any other wave
(first or second wave) is involved in the process of the
stabilizing interaction.

According to general ideology we assume that decay
instability is  suppressed as soon as the

condition s/ 2V >|4,(0)| is satisfied. The left side of

this inequality is the frequency of the energy exchange
between the stabilizing wave and one of the waves
participating in the three-wave interaction. The right
side is the increment of the decay instability. We
analyze system (3) numerically. For that it is convenient
to introduce the following parameters and new real
variables:

A, =x,+ix,, 4 =x, +ix;, 4, =x, +ix;, A, = x, +1ix,
e=ul2V , t=rt.

The usual decay process is observed if the
stabilizing wave is absent (& =0). The decay instability
is stabilized in all cases when the wave A4, (stabilization

wave) is present and the condition y/2V>|A0(O)| is

satisfied.

Stabilization of explosive instability. 1t is worth
noticing that stabilization can be achieved for the
explosive instability case too. Really, in Figs. 1-3 the
dynamics of wave amplitudes is presented
(x,(0)=0.1, x,(0)=0.001, x,(0)=0.01) at explosive
instability in absence stabilization wave (see Fig. 1), and
also dynamics of these amplitudes in the presence of a
stabilization wave (see Fig. 2-3). It is visible from these
figures that already at values of parameter £ =0.09 full
stabilization of explosive instability have been
observed.
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Fig. 1. Explosive instability at =0
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Fig. 2. Suppression of explosive at &€ =0.09
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Fig. 3. Suppression of explosive at & = 0.09

Only the basic wave ( 4, ) and the stabilization wave
(4;) show periodic oscillations and exchange energy

between each other. Other waves almost not change.
However at ¢ =0.08the explosion still appears but its
occurrence is substantially delayed (to times of more
then 400).

3. PARADOX OF TWO SOLUTIONS

The possibility of the stabilization of a quantum
mechanics system has strict justification for an induced
processes only (see [1]). It is reasonable to expect that
spontaneous transitions can be stabilized under the same
conditions. However, here one faces a contradiction.
The solution of the quantum mechanics equations using
usual perturbation theory does not provide such
stabilization. There is a paradox. To illustrate this
situation we consider the particular case of the
synchrotron radiation stabilization. The system of the
equations, which describe the dynamics of the
amplitudes of the synchrotron radiation wave functions
with the presence of the stabilizing perturbation, can be
written as follows:

ihd, =V A exp(=i-AE-t/h) ihd, =V, -4

ihd, =V Ayexp(i-AE -t/ h)+V,, - 4, 4)

Here V' = J.l//O*UW//]d3x Vo :J‘(//l*U’l//Od3x;

V12=_|‘l//1+Ul//2dSX;Vu:V21;A1 — amplitude of wave

function of the excited state; 4, — amplitude of wave

function of the ground state; 4, — amplitude of wave
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function of an additional state were the transitions as a
result of the induced transition caused by stabilizing
perturbation occur.

The system of equations (4) differs from the one
presented in [3] only by presence of the additional
equation for 4,, and also by the additional term in the

right part in equation for 4,. This additional equation

and the additional term describe the dynamics of the
induced transitions between the basic (first) level and
additional (second) level. The operators U™ are defined
in [4]. The operator U describes the potential of external
periodic perturbation.

The system (4) allows the existence of two
essentially different solutions. Let’s consider the first,
strict solution. The solution in the spirit of accepted in
the quantum mechanics. We have the induced process
caused by presence of external perturbation. This
process is much faster than the processes connected
with the spontaneous transitions. Therefore in zero order
approximation we can obtain such solution:

A =cos(Q-t) 4, =—isin(Q-1), 5)
where Q =V, /h.

According to the perturbation theory, one must
substitute these solutions to the system (4). There is no
stabilization if one does this. The spectra of spontaneous
radiation slightly changes and there is the splitting of
the spectra. In addition, there is some periodic
modulation of the probability density. These changes do
not significantly affect the life time of the levels. Let's
consider the second solution. For this purpose we
introduce the following characteristic  times:
At =7 /2Q the characteristic time of the transition
from main stare to new state under the influence of the
stabilizing perturbation and 7, the life time of the
excited state in the absence of the perturbation
(T,=h-R/7,-mc’-y, wherer, — electron’s classical

the radius of electron’s orbit in
Let’s assumeAt/T, <<1. Then the
lifetime of the excited state is Az and the probability of
the transition from the excited state to the ground level

radius; R -
synchrotron).

under the influence of zero fluctuations is proportional
to the square of the ration At/ T, . Thus the probability

to stay on the excited level can be estimated by the
expression:

w~[1=(a0/ 7). (6)

The system returns to the initial excited level after
the time2A¢. It occurs as the result of the induced
transitions. The probability to stay on this excited level
during next interval A¢ can be estimated by the same
formula (6). All these processes of transition are
independent. Therefore the probability to remain at the
excited level is proportional to the product of the
probabilities to remain at the excited level in each of
these intervals Ar. After time 7, the probability to

remain at the excited level can be estimated by the
formula:
w, ~exp(At/2T,) .

One can see that atAs/7, — Othe probability to

remain at the excited level converge to unit.

Therefore, we see that two ways of solving the
equations (4) lead to two solutions which contradict
each other. We choice second solution because only it
corresponds to quantum Zeno effect.

REFERENCES

1. E.C.G. Sudarshan, B. Misra. The Zeno’s paradox in
quantum theory // Journal of Mathematical Physics.
1977, v. 18 (4), p. 756-763.

2. V.A. Buts. Modification of quantum Zeno effect —
quantum whirligig // Electromagnetic waves and
electron systems. 2010, v. 15, Nel, p. 58-65.

3. V.A.Buts. The mechanism of suppression of
quantum transitions (quantum whirligig) // Problems of
Atomic Science and Technology. 2010, Ne4(68), p. 259-
263.

4. A.A. Sokolov, I.M. Ternov.
Moscow: «Science» 1974, p. 391.

Relativistic  electron.

Article received 06.09.12

CTABWIN3ALIUS KJIACCUUECKUX U KBAHTOBBIX COCTOSITHUI
B.A. Byy

[TokazaHo, YTO MeXaHHW3M KBAaHTOBOH OB MOXET ObITh A(PPEKTUBHO HCIIONb30BAH Ui CTaOMIM3aLUK
KJIACCHYECKUX CHUCTEM. B 4acTHOCTH, HalJIeHbl yCJIOBHs CTAOWIIM3AlMU TIOTOKOB 3apsDKEHHBIX YacTHIl U MOTOKOB

H3JIYYCHHUSA B IIa3ME.

CTABLJIIBALIS KIIACUYHUX TA KBAHTOBUX CTAHIB
B.O. byy

JloBeneHo, mo MexaHi3M KBaHTOBOI J3UTH MO)Ke OyTH e(eKTHBHO BHKOPHCTOBYBATHCS Ui cralimizarii

KIACHYHUX CHCTEM. 30KpeMma, 3HaimeHi

BHUITPOMIHIOBAaHHS B TUIA3Mi.
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yMoBH cTabimizamii

MOTOKIB 3apS/KCHUX YaCTOK Ta IIOTOKIiB
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