SCALING LAWS FOR THE HELICON EIGENMODES
IN A NONUNIFORM PLASMA CYLINDER
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The wave eigenmodes of a radially nonuniform plasma cylinder are examined analytically in the helicon
frequency range. Conditions for the existence of almost pure helicon eigenmodes with on-axis localization are
pointed out. The scaling (i.e. the relationship between the plasma density, the magnetic field, and the mode
frequency and wave number) for these eigenmodes is found and shown to depend on the azimuthal mode number.
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INTRODUCTION

The problem of helicon wave eigenmodes in a
radially nonuniform plasma cylinder was examined in
numerous papers in application to helicon discharges,
fusion plasmas etc. (e.g., [1,2]). However, recently this
problem was addressed again [3], for the following
reason. As is known, the helicon wave dispersion
relation for an infinite uniform plasma reads
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is the electron plasma frequency, and o,

where @,

k., k, and k =(kz2 +kf)”2 are the mode frequency

and wave numbers, the longitudinal, transverse and total
ones, respectively. If the frequency is fixed (in a helicon
plasma, it is normally determined by an rf generator),
the dispersion relation (1) yields the scaling for plane
waves propagating along the magnetic field in the form

ny/ By oc k2 where n, is the plasma density and B, an

ambient magnetic field. For a radially bounded
nonuniform plasma, the dispersion is normally
evaluated from Eq. (1) by assuming k, ~a ' where
a=min{R, L,} (R and L,: the cylinder radius and the
characteristic scale of density nonuniformity). For long
waves, k.,a<<1, the total wave number k ~ a’', and

then one obtains the scaling n/B, c k, (n: a radially

averaged density).

In some experiments with the excitation of non-
axisymmetric waves (with the aximuthal number
m#0; normally m =+1) [4,5], it was found that the

long-wave scaling is 7/ B, o k2, which is similar to the

plane wave case. To explain this fact, it was assumed
[3] that excited in these experiments can be radially
localized helicon modes of special type which have off-
axis localization near the surface of strongest radial
density gradient [6]. In this paper we examine on-axis
localized eigenmodes whose scaling is likely to explain
the aforementioned experiments.

1. THE MODEL

We consider a radially nonuniform plasma cylinder
of radius R immersed in a uniform axial magnetic field
of strength B,. The plasma density is assumed to
decrease from the center to periphery. We describe the
electromagnetic fields by Maxwell equation with a cold-
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plasma dielectric tensor. The eigenmode fields are
represented as F(r,?) =F(r)exp(—iot +ik.z +im6)
and m=0,%1,£2...
azimuthal wave numbers. We shall examine the
eigenmodes in the helicon approximation, i.e., assuming
that the longitudinal electric field £, =0. This

approximation is valid under two conditions. First, a
plasma should be considerably nonuniform radially,
with the density at the boundary with a confining vessel
much lesser than the center density, so that the surface
mode conversion is negligible. Second, the mode axial
wave number should lie in the range

20/ )Moy /00 )< k. <(@/ )@y /oo ). (@)

where ®,, is the center plasma frequency. The right

where &, are the axial and

inequality in Eq. (2) signifies that the central part of the
plasma column is transparent whereas the peripheral
part is opaque for the helicon waves. These parts are
separated by the helicon cut-off surface determined by
equation

n(r) = (m, /472> (@, 1 @) 2. 3)
The left inequality in Eq. (2) signifies that the surface of
the helicon wave coalescence with the quasi-
electrostatic (Trivelpiece-Gould) wave is lacking in the
plasma bulk, so that the process of bulk mode
conversion of these waves is excluded [7]. If both
aforementioned conditions are true, the helicon waves
and the Trivelpiece-Gould waves are decoupled and the
former can be described in the helicon approximation.

In this approximation one puts £, =0, and obtains

from Maxwell equations the following equations for the
E, and B, fields
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are the dielectric tensor components, N, =k,c/® is a

longitudinal refractive index, k, =w/c is a vacuum

wave number, and V = (N 22 - gl)z - 522 . The rest of field
components are determined from algebraic equations
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One can eliminate the B, field from Egs. (4) to obtain a
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second-order equation for the £, field
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2. AXISYMMETRIC MODES

Examine first the helicon eigenmodes with the
azimuthal wave number m=0. In this case, the
parameter ¢ =1, and Eq. (6) simplifies to the form

2 (a2
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drr dr N; (N —gl)

As long as the left inequality in Eq. (2) implies that

NZ?>4g,, where &,=g(r=0), with a reasonable

accuracy one can neglect & in comparison to N 22 in

Eq. (8).
Assuming that the density profile is parabolic
n(r):no(l—rz/az), ©)

where a > R, and that @, >> @, one can write

g§~gm( 2r* /a ) (10)

where &3, = a)po | @*w?, . Then Eq. (8) takes the form
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Introducing a dimensionless variable

g=rid, d=b"" (13)
reduces Eq. (11) to the following

i{lM}_i_(ﬂ_gz)Eg:O, (14)

ds|ls dg
where
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A=d’b, = 20 _q (15)
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is an eigenvalue to be determined.

Introducing a new function g

2
Egzexp g/2g (16)
S

and changing the independent variable, &= g2 ,

converts Eq. (14) to the following
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dg 4
L S (17)
ds? ac 4 ®
With the eigenvalue specified as
A
Z=p, 18
1P (18)

where p=1,2,3,...is a natural number, solutions of
Eq. (17) are the orthogonal Laguerre polynomials
L;l (&) . Taking the first polynomial, Ll_l((_‘f) = 52 , one
obtains finally the £, field of first radial helicon
eigenmode in the form

EY = Cyrexpl-r2124%), (19)
where C, is a constant. The value of 4, Eq. (13),

determines the width of the mode localization.
The eigenvalue equation for the first radial mode,

A=4, can be resolved to give the following
relationship
w2y =232 2 o’ ka(1+,/1+(1/16)k2 2). (20)
wa?

The consequence of this equation is the scaling law for
the m =0 modes:

for long waves (k,a <<1)

ny/By < k,a (21)
and for short waves (k,a >>1)
ny /By o< kla®. (22)

3. NON-AXISYMMETRIC MODES

For the non-axisymmetric modes with azimuthal
wave numbers m =0, an analytic analysis can be
performed for the axially long waves, k.a <<1. In this

case, the parameter ¢, Eq. (7), can be approximated as

qzmz/kzzrz. (23)
Substituting this into Eq. (6) and neglecting & in
comparison with N2, one obtains

. (24)

z

rEy +3rE) +(ﬂr8§ +1—m2JE9 =0,

where the prime denotes the derivative with respect to r.
Assuming again a parabolic density profile, as in

Eq. (9), and changing the variable, E,=u/r, one
obtains the following equation
2
u”+lu'+[,u—m—2]u20, (25)
r r
where the eigenvalue to be determined
2me>
PO
=——. (26)
# a’N Zza)a)ce

Equation (25) is the mth-order Bessel equation which
has physically reasonable solution only for the positive

azimuthal numbers (m >0), u=J, (ﬁ r).
Finally, for the long waves k.a <<1 with m >0,
the E, field takes the form
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where C,, is a constant. Note that the right hand side of

Eq. (27) is finite at » — 0, as long as Eém) oc ™ there.

The eigenvalue (26) is specified by the boundary
condition. For instance, if the plasma confining vessel is

Ey(r=R)=0,
\/;R: By where f, is the pth root of the mth

Bessel function. This gives the following relation for the

pth radial mode
2ma)1270R2 B

2~ FPmp:

conducting, one has to put

(28)
N Zza)a)cea

The relationship (28) determines the scaling for the
long (k,a <<1) helicon modes with the azimuthal wave
numbers m >0 in the form

ny /By o ka®. (29)
It is parabolic on k,, contrary to the linear scaling for
the long m =0 modes, Eq. (21).

CONCLUSIONS

It was found that the scaling of cylindrical helicon
eigenmodes in a radially nonuniform plasma depends on
the azimuthal mode number m. For the axisymmetric
modes (m =0) the scaling is parabolic on k, for the
short modes, ny /B, o« kzza2 (k,a>>1), whereas it is

linear for the long modes, ny /By o« k,a (k,a<<1).

On the contrary, the scaling for the non-
axisymmetric (m > 0) long modes is parabolic on £, .

The latter finding can explain the
experimental results [4,5].

appropriate
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3AKOHBI MOIOBMS /151 TEJJMKOHHBIX COBCTBEHHbBIX MO/I
B HEOJIHOPO/IHOM IIJTIA3MEHHOM LIUJIMH/PE

K.II. Illampaii, H.A. bBenowenko

AnanuTunaeckn HUCCICOaOBaHbl BOJHOBBIC COOCTBEHHEBIC MOJBI paguaIbHO-HEOAHOPOAHOIO INIa3MEHHOIO
oquiIrMHApa B I'CJIMKOHHOM JHAla3OHe 4acCTOoT. ‘VkazaHbl yCJI0BUA CYHIECTBOBAHUS MTOYTH YUCTBIX I'€JIMKOHHBIX MOJ,
JIOKAJIM30BAHHBIX BOJIM3H OCH CUCTEMEL. Hatinen ckeitmuar (T.e. B3aUMOOTHOLICHUE MEXKAY IJIOTHOCTBIO IIa3MBI,
MardouTHBIM IIOJIEM H T1I.".lCTOTOI‘/’I, U BOJIHOBBIM YHCJIOM MO,Z[BI) JJIs1 TaKUX MOJ, M IIOKa3aHO, YTO OH 3aBUCHUT OT
A3UMYTAJIbHOI'O BOJTHOBOT'O 4YHCJia.

3AKOHH NOAIBHOCTI AJIs1 TEJIIKOHHUX BJTACHUX MO/
Y HEOJJHOPITHOMY IIVIA3MOBOMY HUJIIHAPI

KL Hlampait, M.A. Benowenko

AHANITHYHO JOCNTI[PKEHO XBWJIBOBI BIACHI MOIM palialbHO-HEOTHOPIMHOTO INIa3MOBOTO IWTIHApPA B
TeNIIKOHHOMY Jialla30Hi 9acToT. BUsBIEHO yMOBH iCHyBaHHS Maibke YMCTHX TEIIKOHHHX MOJ, JIOKaJi30BaHHUX
mo0ImM3y oci CUCTeMH. 3HAWIEHO CKEIMIIHT (TOOTO CIiBBIIHOMIEHHS MK T'yCTHHOIO TUTa3MH, MarHITHAM TIOJEM Ta
YacTOTOK, 1 XBHJIBOBUM YHCJIOM MOJHM) UISi TaKUX MOJ, 1 MOKa3aHO, IO BiH 3aJIe)KUTh BiJ| a3MMYTaJbHOTO
XBUJIOBOTO YHCJIA.
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