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 The recent progress in electron cyclotron current drive calculations with the adjoint technique is reviewed. The 
main attention is focused on such points as parallel momentum conservation in the like-particle collisions and the 
relativistic effects which are especially important for high-temperature plasmas. For moderate-temperature plasmas, 
also the finite collisionality effects become to be important. The effectiveness and accuracy of the developed 
numerical models are demonstrated by ray-tracing calculations.  
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INTRODUCTION 
     The adjoint technique proposed in Refs. [1, 2] is an 
advanced and convenient method for calculation of the 
current drive (CD) in plasmas. Moreover, only this 
technique is directly applicable for stellarators while the 
bounce-averaged Fokker–Planck model explicitly 
assumes axisymmetric configurations. Formally, the 
applicability of the adjoint technique is limited by the 
natural condition that the plasma response to the rf 
source in electron cyclotron resonance heating (ECRH) 
remains linear, i.e., when the density of the rf power is 
sufficiently low in comparison with the rate of 
collisional thermalization, but practically, the standard 
ECRH/ECCD easily satisfy this condition. 
 The central idea of the adjoint technique is 
exploiting a self-adjoint properties of the linearized 
collision operator to express the current through the 
adjoint Green's function, which is proportional to the 
linear plasma response in presence of parallel electric 
field that is formally identical to a solution of the 
Spitzer-Härm problem [3, 4]. This technique was 
subsequently applied to determine the current generated 
by NBI [1] and RF sources [2], for the electron 
cyclotron current drive (ECCD) in toroidal plasmas [5], 
and ECCD generated by asymmetric reflecting wall 
(passive ECCD) in toroidal plasmas [6]. At present, the 
adjoint technique is commonly used for calculations of 
ECCD in different ray- and beam-tracing codes [7-9]. 

The key point of the adjoint technique is the choice 
of the approach. Formally, in toroidal plasmas, the 
adjoint 4D drift-kinetic equation (3D in tokamaks) must 
be solved while taking into account such a factors as the 
geometry, the small but finite collisionality, 
conservation of parallel momentum, relativity, etc. Due 
to toroidicity, the problem can be reduced to an easily 
solvable level only for two opposite limits, the highly 
collisional (not interesting for toroidal plasmas) and low 
collisionality (“collisionless”) limit, where trapped 
particles play essential role. In the last limit, the trapped 
particles do not contribute to the current drive, but 
produce a non-negligible drag on the passing particles. 
This model, which is accepted as most relevant to 
ECCD calculations in toroidal plasmas [5-9] usually 
tends to underestimate the current drive efficiency as it 
neglects all effects due to (barely) trapped electrons. 

Historically, for calculation of ECCD the linearized 
collision operator was simplified by high-speed-limit 

(hsl) approach [10-12], which does not conserve parallel 
momentum in like-particle collisions. This approach is 
rather marginal even for moderate temperature plasmas 
and surely not sufficient for high temperature plasmas. 
The collisionless Spitzer problem with parallel 
momentum conservation (pmc) was considered in [5] 
and with relativistic effects taken into account for 
different physical mechanism of CD generation in 
[6, 13, 14]. 

There are some specific scenarios when existence of 
the barely trapped electrons can also be important for 
generation ECCD. The effect of small but finite 
collisionality in ECCD was considered in Refs. [15, 16] 
(see also the references therein). 

In the present paper, recent progress in ECCD 
calculations is reviewed. A comparative analysis of the 
different approaches and their applicabilities is 
presented. Considering the ITER scenarios, the role of 
parallel momentum conservation in like-particle 
collisions in high-temperature plasmas is illustrated. 
Also the role of finite collisionality effects is discussed. 

 

1. ADJOINT TECHNIQUE 
In the ray-tracing codes, the toroidal current driven 

on the elementary arc-length of the ray-trajectory can be 
cal-culated. The key value is the current drive 
efficiency, η = 〈j||〉/〈pabs〉, where 〈j||〉 = -〈∫d3u(ev||δfe)〉 is 
the density of current and 〈pabs〉 = me0c2 〈∫d3u(γ-1)QRF〉 is 
the density of the absorbed RF power, which are the 
functions only of the flux-surface label (here, ...〈 〉  
denotes averaging over the magnetic surface). The 
current driven by the RF source can be formally 
calculated (in linear approach) by solving the drift 
kinetic equation (DKE), which describes the line-ar 
response of electrons to the RF source, 
 ( ) ( ),lin

e e RF eMv f C f f∇ δ − δ = −∇ ⋅u Γ  (1) 
where ∇|| = ∂/∂l is the derivative along the field-line, δfe 
is the distortion of the electron distribution function 
from the Maxwellian, feM, and Clin the linearized 
collision operator, ΓRF the quasi-linear diffusion flux in 
u-space, ∇u = ∂/∂u, and u = vγ the momentum per unit 
rest mass. Exploiting self-adjoint properties of Clin, it's 
possible to express the current drive through the 
convolution of the RF source with the adjoint Green's 
function χ, which is solution of the adjoint kinetic 
equation,  
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where b=B/Bmax. Find that χ(-u||) is formally identical 
(apart from normalization) to the generalized Spitzer 
function in toroidal geometry. The final expression for 
ECCD efficiency is  
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Being quite convenient for numerical representation, 
this form is the usual basis for ECCD calculations in the 
ray-tracing codes. 

Most important for a precise calculation of ECCD is 
the model chosen for the operator Clin. Historically, the 
high-speed-limit (hsl) approach [10-12] was commonly 
accepted as the standard tool for calculation of ECCD. 
This approach is based on the assumption that only the 
supra-thermal electrons with v >> vth are involved in the 
cyclotron interaction. Unfortunately, in high-
temperature plasmas, the energy range of electrons 
which make the main contribution to ECCD is not so far 
from the bulk, and the hsl approach fails even for highly 
oblique launch. 

 

2. ANALYTICAL LIMITS 
 

 In Eq. (2), different time-scales exist: while the first 
term is characterized by the transit time, v||∇|| ∝ τc-1, the 
collision operator is characterized by the collision time 
Clin ∝ τc-1. For ordering Eq. (2), we take into account 
that the ratio / * ( ) /t c e u R uτ τ ≡ ν = ν γ ι  can vary 
significantly. When collisionality is high, * 1ν , i.e. 

t cτ τ , Eq. (2) reduces to the local problem. In this 
case, only the 1st Legendre harmonic of χ  is necessary, 

i.e. 1χ = ξχ  and 13
1 2 1 d−χ = χξ ξ∫  (here, ξ = v||/v). Then, 

instead of Eq. (2), it becomes sufficient to solve the 1D 
integro-differential equation for 1χ , 

1 1 0 1 1 1 1
ˆ ˆ( )  with ( ) ( ) / .lin lin lin

e eM eM
th

uC C C f f
v

χ = −ν χ = χ
γ

 (4) 

Here, 1
linC  is the 1st Legendre harmonic of the 

linearized collision operator. This is the classical Spitzer 
problem for calculation of the plasma conductivity 
which has been thoroughly studied for both non-
relativistic [3] and relativistic [4]. This solution being 
applied to Eq. (3) gives the upper limit for current drive 
efficiency, but is of no practical relevance for hot 
plasmas in toroidal devices. 
 In the opposite (low collisionality or “collisionless”) 
limit, * 1ν , the impact of the trapped particles is 
important. In this case, the dimensionality of the 
problem can also be reduced to 2D since the spatial 
dependence appears only due to the coupling between 
the pitch, 1 bξ = σ −λ  with 1σ = ±  and the local 
magnetic field, ( )b l , through the (normalized) magnetic 
moment, λ . By averaging Eq. (2) over the magnetic 
surface, the Vlasov operator is annihilated and the 
problem is reduced to a 2D equation 

  (5) 
This is the basic model for calculation of CD in the 
different ray- and beam-tracing codes. The form chosen 
for the collision operator is very important for the 
solution. Note also that in this approach the problem is 
antisymmetric (with respect to ξ), and, as a 
consequence, only the antisymmetric part of the 
quasilinear operator contributes in the current drive 
calculated by the convolution Eq. (3). 
 Representing the solution of Eq. (5) as series of the 
eigenfunctions Φk(ξ), 
 

( , ; ) ( ) ( )k kk odd
u F u

=
χ λ σ = σ Φ ξ∑ ,      (6) 

 

one can obtain exact solution, where the coefficients 
Fk(u) must be calculated as solutions of the set of 1D 
integro-differential equations. Following this line, the 
numerical solver SYNCH was developed in Ref. [6]. 
 It is possible also to simplify Eq. (5) without 
significant loss of accuracy. Since the pitch-scattering of 
electrons is the dominating process, all terms in the 
collision operator apart from the Lorentz term can be 
approximated by only the first Legendre harmonic [5],  
 

 1, 1 1
ˆ ˆ( ) ( ) ( ) [ ( ) ( ) ],lin lin

e ee eeC u L C uχ ν χ + ξ χ + ν χ  (7) 
 

where L(χ) is the Lorentz operator and 1, ( )χl
eeC  is the 

first Legendre harmonic of the linearized e/e collision 
operator. In this approximation, Eq. (5) can be solved 
analytically [6], 
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where fc and ftr are the fractions of circulating and 
trapped particles, respectively, and h(x) is the Heaviside 
function. A function 12

3 0( )K u d= χ λ∫ , which is 
proportional to the Spitzer function, must be found as 
the solution of a 1D integro-differential relativistic 
equation, 

 1 0
ˆ ( ) ( ) ( ) .lin tr

e e
c th

f uC K u K u
f v

− ν = −ν
γ

 (9) 

In this approach, only the anti-symmetrical part of the 
quasilinear operator can contribute in the convolution 
Eq. (3) which gives the driven current. Nevertheless, 
when applied only to the collisionless limit, this 
approach is sufficiently accurate.  

Recently, a very fast and sufficiently accurate 
numerical model for calculating the ECCD efficiency 
was developed [14]. This model is based on the solution 
of the integro-differential equation, Eq.(9), where the 
Spitzer function, K(u), is calculated with parallel 
momentum conservation in the e/e collisions. In order to 
simplify and accelerate the numerical solution, 
relativistic effects are accounted through a power 
expansion in μ−1=Te /me0c2.  
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3. LOCAL ECCD EFFICIENCY  
IN TOKAMAKS 

 

 For comparison of the considered approaches, the 
local dimensionless ECCD efficiency,  

  
3

*

02
e

e abs

jne
T p

ζ =
πε

,       (10) 

(here, we use the definition and notations from Eq. (10) 
in Ref. [12]), is calculated for X-mode, second 
harmonic with the different values of N|| = 0.34, 0.42, 
and 0.5. The calculations were performed for a circular 
tokamak with a magnetic field B = B0/(1+ε cosθ) and   
ε = r/R0 = 0.2 (here, θ is the poloidal angle). The plasma 
parameters, ne  = 2×1019 m−3, Te = 5 keV, and Zeff = 1, are 
chosen in such a way that the main contribution in 
current drive is generated by electrons with u ~ 2vth, 
where parallel momentum conservation starts to be 
important. 
 

 
 

Fig. 1. Dimensionless ECCD efficiency for X2-mode for 
different launch angles as a function of normalized 

magnetic field, nY = nωce /ω. The data are calculated 
with different approaches for circular tokamak (see [8]) 

 

The results of calculations are shown in Fig.1, where 
the local ECCD efficiency, ζ*, is plotted as a function of 
the normalized magnetic field, which actually defines 
the location of the resonance line in the phase space for 
the given N||. The calculations were performed for 
poloidal angle θ = 0, i.e. for the minimum of B on the 
given magnetic surface. One can see that ζ* calculated 
with the hsl model, significantly differs from the pmc 
values. Note also that ζ* calculated by exact [6] and 
approximate [14] pmc models are in satisfactory 
agreement. 
 

4. COMPARISON OF THE MODELS 
 

The practical importance of performing accurate 
calculations of the current drive can be illustrated for 
quite typical ECCD scenarios in ITER. In Fig. 2, the 
results of ray-tracing calculations for the ITER 
reference scenario-2 are presented [8], where the angle-
scan for the equatorial launcher is depicted. Three 
different codes were applied: TORAY-GA [17] with hsl 
model, TRAVIS [18] with both hsl and pmc models, 
and the Fokker–Planck code CQL3D [19]. For 
calculations by TRAVIS, both “exact” and 
“approximate” numerical solvers were applied, which 

are based on the fully relativistic splining and the 
weakly relativistic polynomial fit, respectively. 
One can see in Fig. 2 that the results obtained by both 
TORAY-GA and TRAVIS with the same hsl approach 
applied are in perfect agreement. On the other hand, a 
comparison with the results obtained with the pmc 
model shows that the hsl model significantly 
underestimates the ECCD efficiency (especially for 
small and moderate angles) and the convergence with 
pmc results is observed only for very high obliqueness. 
For the angles which are of the main interest, i.e. 
20...40°, the discrepancy between the hsl and pmc 
models varies from 10 to 30 %.  
 

 
 

Fig. 2. ECCD efficiency as a function of the toroidal 
launch angle for ITER, equatorial launcher, obtained by 

different codes using different approaches (see [8]) 
 

From comparison of the results obtained by 
TRAVIS with the pmc model and by CQL3D, one finds 
that these results also coincide well. It can be pointed 
out that the accuracy of the pmc models [6, 14] for 
solving Eq. (5) is well confirmed by Fokker–Planck 
calculations. 

In a gedanken experiment [7] with a smaller launch 
angle and absorption close to the axis, i.e., a smaller 
fraction of trapped electrons, a strong discrepancy 
(current drive differs more than in two times) between 
the codes with a parallel momentum conserving 
collision term and the widely used hsl model was 
obtained. All collision terms in the simple hsl do not 
conserve parallel momentum leading to a smaller ECCD 
at moderate electron velocities in the wave absorption; 
see Ref. [8] for more details. 
 

5. FINITE COLLISIONALITY EFFECTS 
 

 The case, when the plasma parameters and magnetic 
equilibrium are such that the effects of finite 
collisionality can be important for generation of the 
current drive, is most complex. In this case, 
dimensionality of Eq. (2) cannot be reduced and Spitzer 
problem must be solved accounting the “mixing” of the 
variables in real and momentum spaces. The code 
NEO2 [20] solves this problem for arbitrary 
collisionality and the local generalized Spitzer function 
necessary for ECCD can be calculated [15], which, 
contrary to the collisionless model Eq. (5) where only 
the invariants of motion necessary, depends also from 
the local variables.  
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 Apart from solution obtained by NEO2, the Spitzer 
function can be obtained also by momentum-correction 
technique [21]. To do it, the mono-energetic DKE 
Eq. (2) is solved (in 3D for stellarators and in 2D for 
axisymmetric tokamaks) by the drift-kinetic equation 
solver (DKES) [22]. In DKES, the distribution function 
is expanded in a Fourier series with respect to the 
poloidal and toroidal angles in Boozer coordinates and 
in Legendre polynomials with respect to the pitch,         
p = v||/v.  

 
Fig. 3. Generalized Spitzer function χ vs pitch p = v||/v  
for v/vth = 1, 2, calculated with different approaches for 
circular tokamak with ε = 0.13 at the poloidal angle θ 

= 90°. Plasma parameters:  
ne = 1020m-3, Te = 1.56 keV, Zeff = 1.5 

 In Fig. 3, the pitch dependencies of the mono-
energetic Spitzer function are shown. Calculations were 
performed for the circular tokamak for the poloidal 
angle θ = 90° at the magnetic surface ε = r/R0 = 0.13. 
This point is interesting since the up-down asymmetry 
[23, 15] is well seen. Plasma parameters are chosen in 
such a way that the finite collisionality effects would be 
sufficiently pronounced. One can find also that these 
results are in good agreement with those obtained by 
NEO2 (see [15]). 
 However, both NEO2 and DKES are too 
“expensive” and cannot be used as permanent tool 
ECCD calculations. Instead, the “off-set” approximation 
which significantly  simplifies calculations  of   ECCD 
 

with finite collisionality was developed. Following Ref. 
[21], the “effective” circulating particle fraction can be 
expressed through the mono-energetic longitudinal 
conductivity, 33( *)D ν , 

33
2

3 ( ) ( *( ))( *( )) ,
2
ν ν

ν =
〈 〉

eff e
c

u D uf u
u B

          (10) 

which is equivalent to the conductivity normalized to its 
Pfirsch-Schlütter value. In the highly collisional limit, 

( * ) 1eff
cf ν →∞ = , and ( * 0)eff

c cf fν → =  is the circula-
ting particle fraction for collisionless limit, considered 
before. The generalized Spitzer function given by 
Eq. (7) can be reformulated then as [16] 

( , ; ) ( ; *( )) ( ).eff eff effu H u K uχ λ σ = σ λ ν      (11) 

Here, the equation for ( )effK u  coincides formally with 

Eq. (8) where cf  and trf  must be replaced by ( )eff
cf u  

and ( ) 1 ( )eff eff
tr cf u f u= −  , respectively. Then 

*
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* *

( )2( ; ( )) ( ) (1 )
3( ) ( )

eff
eff c c

eff eff
c c

f fH u H h
f f

δ ν
λ ν = λ + −λ

ν ν
, 

(12) 
 

with eff eff
c c cf f fδ = −  and ( )H λ  given by Eq. (8). This 

formulation being supported by pre-calculated the 
mono-energetic transport coefficient data-base has been 
in TRAVIS code implemented.  

In Fig. 4, the results of ray-tracing calculations for  
O2-mode in stellarator W7-X are shown. From the 
absorption rate is seen that contributions from both 
passing and trapped electrons are important. Contrary to 
this, in ECCD only the passing electrons contribute. If 
the finite collisionality effects are not negligible, the 
barely trapped electrons, due to their  diffusion into the 
passing domain, create an enhancement of the 
distribution function for the passing particles. As 
consequence, driving the current is changed for those 
electrons which are in resonance close to the boundary 
passing/trapped particles that is seen in Fig. 4 (right). 

 
Fig. 4. The absorption rate, dPabs/ds (on the left) and current drive, dIcd/ds (on the right) along the tray trajectory 
for the O2-mode in W7-X; ne(0) = 1020 m-3, Te(0) = 2 keV, Zeff = 1.5.  Left: the full line – total rate of absorption, 

dash-dotted – contribution from passing electrons, and dashed – from trapped ones. Right: current drive calculated 
in low collisionality limit (dash-dotted) and with the “off-set” model (full line) 

a b
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CONCLUSIONS 
In this paper, the different approaches necessary for 

calculations of the electron cyclotron current drive in 
plasmas with low and finite collisionalities and recent 
progress in numerical modelling has been reviewed. All 
the formulations based on the adjoint technique are 
oriented for usage in ray- and beam-tracing codes, 
which at the present time are the main tools for 
numerical studies of ECRH and ECCD physics. The 
main attention was focused on parallel momentum 
conservation in the like-particle collisions which is 
much more precise for calculations of ECCD than the 
high-speed-limit (especially in hot plasmas). It was 
shown that an accurate kinetic solution of the Spitzer 
problem with parallel momentum conservation in like-
particle collisions is of high importance in ECCD 
physics and may give a significant effect. 

A models for ECCD calculations with small yet 
finite collisionalities has also been described. In 
particular, there is considered the numerical model 
which adds to the collisionless solution of the drift-
kinetic equation for the parallel conductivity a simple 
“off-set” contribution only in the passing particle 
domain. The basic information needed is the effective 
circulating particle fraction which is equivalent to the 
mono-energetic parallel conductivity coefficient 
normalised to the Pfirsch-Schlüter value; these values 
can be simply interpolated from databases of mono-
energetic transport coefficients calculated, e.g., with the 
DKES code. Both for tokamaks and stellarators, this 
approach is very fast and can be directly implemented in 
ray-tracing codes (the test-version of the “off-set” 
model in already implemented in the code TRAVIS). 
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РАЗВИТИЕ МОДЕЛЕЙ ДЛЯ ВЫЧИСЛЕНИЯ ЭЛЕКТРОННО-ЦИКЛОТРОННОГО ТОКА 
УВЛЕЧЕНИЯ  

Н.Б. Марущенко, C.D. Beidler, H. Maassberg  

Сделан обзор недавних достижений в методах вычисления электронно-циклотронного тока увлечения. 
Основное внимание направлено на учёт сохранения продольного импульса в операторе столкновений, а 
также учёт релятивистских эффектов, существенных в высокотемпературной плазме. В плазме относительно 
небольшой температуры также эффекты конечной столкновительности становятся существенными. 
Эффективность и точность развитых численных моделей продемонстрированы результатами, полученными 
с помощью метода лучевых траекторий. 

 
РОЗВИТОК МОДЕЛЕЙ ДЛЯ ОБЧИСЛЕННЯ ЕЛЕКТРОННО-ЦИКЛОТРОННОГО СТРУМУ 

ЗАХОПЛЕННЯ  
Н.Б. Марущенко, C.D. Beidler, H. Maassberg  

Зроблено огляд недавніх досягнень в методах обчислення електронно-циклотронного струму захоплення. 
Головна увага спрямована на облік збереження продольного імпульсу в операторі зіткнень, а також на  облік 
релятивістських ефектів, значних у високотемпературній плазмі. У плазмі відносно невеликої  температури 
ефекти кінцевої зіткненості також стають істотними. Ефективність та точність развинутих моделей 
продемонстровано результатами, які були отримані за допомогою методу променевих траєкторій.  


