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THE METHOD FOR HIGH ORDER MODES PARAMETERS 
ESTIMATION IN PERIODICAL STRUCTURES 
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The High Order Modes (HOM) parameters are calculated in traveling wave mode at one structure period for the 
reference set of the phase advance values, with real 3D geometry in the wide frequency range. For the structure with 
arbitrary length HOM parameters are interpolated basing on periodicity properties. The method resolution doesn’t 
depends on the number of periods in the structure and allows reliably identify interesting and important HOM pa-
rameters for long structures and in high frequency region. 
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INTRODUCTION  
To estimate the multi-bunch effects due to long 

range wake fields induced in cavity-like obstacle, one 
has to know cavity response to the passing particle. The 
longitudinal Wl(rt,re,s) and the transversal Wt(rt,re,s) 
wake potentials for unit test and exiting point charges 
are expressed as [1,2]:  
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where rt and re are radial positions for the test and the 
exiting charges, respectively, kl

m and kt
m are the loss fac-

tor and the kick factors for the mth HOM in the cavity:  
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τm, Qm, ωm are the rise time, the quality factor and the 
frequency for the mth mode, Eszm and Um are the distribu-
tion for z component of electric field and stored field 
energy for the mth mode. L is the cavity length.  

To estimate the Wl(rt, re, s) and the Wt(rt, re, s) val-
ues we need in field distributions and RF parameters for 
all modes, which are possible in the cavity in a given 
frequency range. The length of the bunch is suppose 
much less as compared to the wavelength of the highest 
HOM. Suppose we have in the beam line enough long 
cavity, based on the periodical structure. In the cavity 
with N cells in the pass-band for each wave, there are, 
generally, N possible modes. Also there are a lot of 
pass-bands for different waves. For example, in the de-
flecting structure LOLA IV, [3], below frequency 4.5 f0, 
where f0 =2856 MHz is the operating frequency, there 
are ~ 250 pass-bands for different waves. The structure 
has N=104 cells and number of modes in the frequency 
range under consideration is of ~ 30,000. Even with 
powerful modern software for numerical simulations for 
fields distributions and mode frequencies, direct simula-
tions for such modes amount are not realistic. 

1. APPROXIMATIONS AND ASSUMPTIONS 
For HOM parameters simulation we approximate the 

real structure by perfect periodical structure with the 
same number of cells, assuming also half cell termina-
tion, Fig.1. Such case we exclude from consideration 
input/output RF couplers, connection with beam pipe 
and another deviations from periodicity. This case we 
have to keep in mind possible influence of these ele-
ments on the results.  

 
Fig.1. The cavity approximation as the finite length 

 periodical structure 
The structure period is assumed with mirror symme-

try planes z=const. It allows us apply half cell structure 
terminations and decompose a standing wave fields in 
two traveling waves. The mirror symmetry planes x=0 
or y=0 are not necessary. If such symmetry planes exist, 
it should be used to save time for numerical simulations.  

2. PROCEDURE OF SIMULATIONS 
To estimate HOM parameters in the cavity, based on 

the periodical structure in a wide frequency range, we 
simulate with modern software in the same frequency 
range parameters of traveling waves considering just 
one period of the structure for the reference set of the 
phase advance values θj, j=0,1,…J per period. The each 
component of a traveling wave field has real and imagi-
nary parts: 

*( , ) ( , ) ( , ), ( , ) ( , ).f j j j b j f jE r z E r z i E r z E r z E r z= В - Б =       (3) 

For the structures with mirror symmetry in the pe-
riod the real and the imaginary parts distributions along 
the axis have a conjugated parity. For definiteness we 
will assume distribution of the real part as the even 
function. 

In Fig.2,a the cell of the deflecting structure for the 
PITZ Transverse Deflecting System [4] is shown to-
gether with the geometry for numerical simulations, 
Fig.2,b, and an example for real and imaginary Ez parts 
distributions, Fig.2,c. 
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Fig.2. The cell of the deflecting structure(a), the  

geometry for numerical simulations (b) and an example 
for real and imaginary parts distributions (c) 

for the first monopole wave with θ=15°  
If the fields distributions Efz (3) of the traveling 

waves are known, for the structure with N periods a 
standing wave distribution Eszm for the mth mode can be 
found as: 
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Substituting the expression (4) for longitudinal field 
of the mth mode into (2), after transformation one can 
find for the loss factor kl

m value: 
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and 
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The huge formula (5) with (6) and (7) describes the 
general case, including both synchronous (θm= φm) and 
not synchronous interaction between the wave with and 
relativistic particle. In the case of synchronous interac-
tion this formula is very simple: 
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where nb is the integer part of ratio (2π fm)/(θo fo), where 
θo and fo are the operating phase advance and operating 
frequency of the structure, respectively.  

The kick factor value for dipole-like modes can be 
estimated with the same way, calculating Ez in integrals 
of interactions (6) at some distance re, see (2). 

Integrals of interaction (6) are calculated at the set of 
reference θj values and there are the smooth θm and φm 
functions. For intermediate θm values in the long struc-
ture interpolation is used. 

3. MODEL VERIFICATION 
To check the correctness of the proposed model and 

huge intermediate transformation to the final expression 
(5), we can directly simulate the field distributions in 

the relatively short N=16 or N=46 cells structures [4], 
for the first pass-bands of monopole modes TM01 and 
dipole modes HE11, assuming standing wave regime, 
and calculate kl

m and kt
m values for each mode from (2). 

The models for these direct simulations are shown in 
Fig.3. 

 
Fig.3. The models for direct fields distributions simula-

tions in the first TM01 and HE11 pass-bands 
The results of this comparison are plotted in Fig.4. 

The solid lines just connect points of kl
m and kt

m values 
for discrete θm values. 

 
Fig.4 The kl

m and kt
m values calculated from direct field 

distributions simulations (blue) and from (5) (magenta) 
for N=16 cells (a,c) and N=46 (b,d). The green trian-

gles are for the full end cell termination 
One can see in Fig.4 a good coincidence of results, 

obtained with different approaches. For the most impor-
tant the maximal kl

m and kt
m values the relative differ-

ence is inside of 5%. The huge formula (5) for kl
m and 

kt
m values in long periodical structures is correct and can 

be used for estimations. 
As one can see from the Fig.4, kl

m and kt
m depend-

ences on θm have a bell-like shape. The width of this 
bell is narrower for longer structure, but all time three 
modes belong to the peak.  

4. INTERACTION OF PARTICLE WITH 
WAVE IN THE FINITE STRUCTURE 

In the aperture of periodical structure the component 
Ez both for traveling Ef and for standing Es waves can be 
expanded into series over space harmonics [5]: 
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For each space harmonic in (9) we can directly esti-
mate the integral of interaction S(θmp) with the relativis-
tic particle, which is in the numerator for kl

m and kt
m 

values in (2). 
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The real, the imaginary parts and the amplitude of 
S(θmp) for the first monopole pass-band TM01 in the de-
flecting structure [4] are plotted in Fig.5. 

 
Fig.5. The plots of the real (blue), the imaginary (red) 
parts and the amplitude (green) for integral of interac-
tion S(θmp) for the first monopole pass band in the de-

flecting structure [4], N=46  
One can see in Fig.5 for the S(θmp) amplitude the 

same bell-like shape, as in Fig.4. As one can directly 
find from (10), the maximal value |S(θmp)|max =Nd/2 and 
is realized for the synchronous case θmp/d=ωm/c. The 
width of the main peak, see Fig.5, is of dθ=4π/N and for 
longer structures this peak is narrowed. The modes 
separations in the structure is of π/N and all time at least 
three modes belong to the main peak. 

The decreasing adjacent peaks, Fig.5, have the width 
of dθ=2π/N. The nearest peaks have the maximal value 
of Nd/(3π). With respect the with to the main peak, the 
nearest adjacent peaks are 3π/2 ~ 4.5 times lower. In the 
expressions (2) interaction S(θmp) is in the second power 
and all modes, which do not belong to the 2π/N vicinity 
of the synchronous point, will have at least one order 
lower kl

m and kt
m values. 

5. COMPARISON WITH THE RESULTS 
OF TIME DOMAIN SIMULATIONS 

To check this method additionally, HOM parameters 
simulations were performed for the LOLA IV deflecting 
structure [3] in the frequency range f < 4.5 f0 and our 
results were compared with the results, obtained for the 
same structure with the time domain approach [6]. For 
comparison our simulations were performed for a refer-
ence structure, which is in 2D approximation, similar to 
one, shown in Fig.2, but without holes for deflection 
plane stabilization. For the monopole modes in the refer-
ence LOLA IV structure calculated dispersion diagram is 
shown in Fig.6. The main reason for such 2D approxima-
tion is only limitations for software, used in [6]. 

In Fig.6 all zones for all points of synchronous inter-
actions for different branches of the dispersion diagram 
are marked with numbers. Numerical results of com-
parison are presented in the Table, where Nb is the 
brunch number in the dispersion diagram (see Fig.6).  

 
Fig.6. Dispersion diagram for monopole modes in the 

reference LOLA IV structure 
The loss factor values for the monopole modes with 
 kl

m > 1 V/(pC) in the LOLA IV reference structure.  
Results from [6] are presented for comparison 

Nb 
fm, 

GHz 
kl

m, 
V/pC 
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mmax, 

V/pC Qm fm,[6], 
GHz 

kl
m,[6]

V/pC 
1 
1 
1 
1 
1 
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2.092 
2.094 
2.097 
2.099 

1.35 
1.35 
29.45 
23.32 
2.28 
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33.29 
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13363 
13357 
13352 
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2 
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4.65 
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5.09 3.26 

3 
3 
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5.555 
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4.20 

5.25 
5.52 

13543 
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5.76 

4 
4 
4 

6.894 
6.890 
6.886 

1.01 
3.92 
3.12 

3.50 
4.02 
4.57 

28290 
28113 
27936 

 
 
6.93 

 
 
4.7 

5 
5 
5 

7.582 
7.582 
7.582 

3.86 
6.14 
1.46 

6.25 
6.44 
6.63 

17228 
17323 
17418 

 
7.62 

 
6.4 

8 10.492 1.44 1.52 18173 10.5 1.3 
9 
9 

10.930
10.929

1.92 
2.58 

3.16 
2.71 

24778 
24784 

11 2.6 

10 
10 

11.660
11.662

2.47 
1.99 

2.76 
2.62 

20733 
20614 

11.7 2.8 

 

For each pass in the time domain simulations just 
one mode is shown. It is not a fundamental limitation, 
but to show a fine modes structure for each zone of in-
teractions time domain will is required fields simula-
tions at much longer distances s > c/(fm+1-fm) ~ 100 m, 
as it accepted usually (s>> c/fm ~ 1 m). With such re-
quirement the time domain simulation for long struc-
tures with short bunches becomes a huge computational 
problem. As one can see from Table, the frequency 
value for interacting modes coincides with reasonable 
precision. The single loss factor value kl

m for each pass 
band coincides very well with our estimation for the 
maximal loss factor value kl

mmax (8) for this pass band. 
But, our simulations show in the vicinity of synchro-
nous point at each pass band at least two modes with kl

m 
values, comparable with kl

mmax. 
As the result, over all loss factor value, summarized 

over all modes at the pass band, from our approach is 
more than two times larger, as from usual time domain 
simulations. For our approach such difference is moti-
vated well both with the physical consideration in Sec-
tion 5 and direct numerical verification in Section 4. 
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Similar comparison has been performed for kick fac-
tor values kt

m for the same LOLA IV reference structure. 
The same coincidence in frequencies for synchronous 
points and kick factor values, and the same difference in 
the number of interacting modes at each pass band. Also 
the same is the conclusion for over all kick factor value 
for each pass band – our approach provides more than 
two times value, as compared to usual medium s range 
tine domain simulations.  

5.1. MODE MIXING EFFECT ON LOSS 
AND KICK FACTORS VALUES 

The total modes spectrum of the structure, especially 
in high frequency region, is rather complicated. But 2D 
approximation reference structure option we can clearly 
separate monopole and dipole modes, which are mostly 
dangerous for the multi bunch effects. And in reference 
structures all multi – pole modes have Ez=0 at the struc-
ture axis. 

In the real 3D structure all modes have more com-
plicated field distributions. If a 3D addition (with re-
spect to 2D reference structure) is not so strong, one can 
treat fields in the 3D structure with mode mixing effect, 
considering 3D structure fields as composed from refer-
ence modes of 2D reference structure.  

Loss and kick factor values were calculated in the 
real 3D LOLA IV geometry, taking into account holes 
for deflecting plane stabilization, see Fig.2, in the same 
frequency range f < 4.5 f0. The first pass bands both for 
monopole and dipole modes are well separated in fre-
quency from another branches of dispersion diagram, 
resulting in kl

m and kt
m values with negligible difference 

between real 3D and approximated 2D structures. For 
higher pass bands with frequencies f > 1.5 f0 real mode 
mixing effect exists, resulting in more smooth loss fac-
tor redistribution between branches of the total disper-
sion diagram.   

Basing on the theory of coupled modes, but omitting 
huge formulas and transformations for multi coupled 
modes analysis, and results of direct simulations for 3D 
real structures and 2D approximations, qualitative con-
clusion can be done. For not strong 3D deviations from 
2D approximated structure geometry the mode mixing 
effect produce more smooth distribution for loss factor 
values kl

m between branches of the total dispersion dia-
gram for 3D structure. But the over all loss factor value 
in the wide frequency range is the same, both for real 
3D and approximated 2D structures, with the precision 
in several percents. 

For kick factor values such conclusion is not valid 
and large difference, than several percents, was detected 
between 3D and 2D approximations.  

SUMMARY 
The method for HOM parameters estimations in pe-

riodical structures is developed. HOM parameters are 
calculated in the wide frequency range at one structure 
period for the reference set of the phase advance values, 
with real 3D geometry. For the structure with arbitrary 
length HOM parameters are interpolated basing on pe-
riodicity properties, meaning the problem dimensional-
ity decreasing for simulations. Wake fields excitation is 
treated as an interaction of particle with finite length 
periodical structure. It results in the detection of the fine 
structure for interacting modes in vicinities of each 
point of synchronous interaction at different modes pass 
bands. Detection of such fine modes structure with time 
domain approach for long structures with a short 
bunches will require enormous efforts in simulations. 

The method was applied for HOM parameters esti-
mation and study in the X-FEL TDS [4].  

This work was supported by the Ministry of Educa-
tion and Science of the Russian Federation, the contract 
№ 16.518.11.7037 
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МЕТОД ВЫЧИСЛЕНИЯ ХАРАКТЕРИСТИК ВЫСШИХ МОД В ПЕРИОДИЧЕСКИХ СТРУКТУРАХ  
В.В. Парамонов, Д.В. Денисенко 

ВЧ-характеристики высших мод колебаний (ВМК) рассчитаны в режиме бегущей волны в широком диапазоне час-
тот на одном периоде структуры в трехмерном приближении для опорного набора набегов фазы поля на период. Для 
структуры с произвольным числом периодов ВМК параметры интерполируются исходя из свойств периодичности. Раз-
решение метода не зависит от числа периодов в структуре и позволяет выявить важные особенности ВМК в длинных 
структурах и диапазоне высоких частот.  

МЕТОД ОБЧИСЛЕННЯ ХАРАКТЕРИСТИК ВИЩИХ МОД У ПЕРІОДИЧНИХ СТРУКТУРАХ 
В.В. Парамонов, Д.В. Денисенко 

ВЧ-характеристики вищих мод коливань (ВМК) розраховані в режимі бігучої хвилі в широкому діапазоні частот на 
одному періоді структури в тривимірному наближенні для опорного набору набігів фази поля на період. Для структури з 
довільним числом періодів ВМК параметри інтерполіруються виходячи з властивостей періодичності. Дозвіл методу не 
залежить від числа періодів в структурі і дозволяє виявити важливі особливості ВМК у довгих структурах і діапазоні 
високих частот. 


