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The High Order Modes (HOM) parameters are calculated in traveling wave mode at one structure period for the
reference set of the phase advance values, with real 3D geometry in the wide frequency range. For the structure with
arbitrary length HOM parameters are interpolated basing on periodicity properties. The method resolution doesn’t
depends on the number of periods in the structure and allows reliably identify interesting and important HOM pa-

rameters for long structures and in high frequency region.
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INTRODUCTION

To estimate the multi-bunch effects due to long
range wake fields induced in cavity-like obstacle, one
has to know cavity response to the passing particle. The
longitudinal W'(r,r.s) and the transversal W(r,r.s)
wake potentials for unit test and exiting point charges
are expressed as [1,2]:
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where r; and r, are radial positions for the test and the
exiting charges, respectively, k., and ¥, are the loss fac-
tor and the kick factors for the m™ HOM in the cavity:
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Tm, Om, On are the rise time, the quality factor and the
frequency for the m™ mode, E,,,, and U,, are the distribu-
tion for z component of electric field and stored field
energy for the m” mode. L is the cavity length.

To estimate the W'(r, r,, s) and the W(r, r. s) val-
ues we need in field distributions and RF parameters for
all modes, which are possible in the cavity in a given
frequency range. The length of the bunch is suppose
much less as compared to the wavelength of the highest
HOM. Suppose we have in the beam line enough long
cavity, based on the periodical structure. In the cavity
with N cells in the pass-band for each wave, there are,
generally, N possible modes. Also there are a lot of
pass-bands for different waves. For example, in the de-
flecting structure LOLA 1V, [3], below frequency 4.5 f,,
where f; =2856 MHz is the operating frequency, there
are ~ 250 pass-bands for different waves. The structure
has N=104 cells and number of modes in the frequency
range under consideration is of ~ 30,000. Even with
powerful modern software for numerical simulations for
fields distributions and mode frequencies, direct simula-
tions for such modes amount are not realistic.
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1. APPROXIMATIONS AND ASSUMPTIONS

For HOM parameters simulation we approximate the
real structure by perfect periodical structure with the
same number of cells, assuming also half cell termina-
tion, Fig.1. Such case we exclude from consideration
input/output RF couplers, connection with beam pipe
and another deviations from periodicity. This case we
have to keep in mind possible influence of these ele-
ments on the results.

2 n=( n=l

Fig. 1. The cavity approximation as the finite length
periodical structure

The structure period is assumed with mirror symme-
try planes z=const. It allows us apply half cell structure
terminations and decompose a standing wave fields in
two traveling waves. The mirror symmetry planes x=0
or y=0 are not necessary. If such symmetry planes exist,
it should be used to save time for numerical simulations.

2. PROCEDURE OF SIMULATIONS

To estimate HOM parameters in the cavity, based on
the periodical structure in a wide frequency range, we
simulate with modern software in the same frequency
range parameters of traveling waves considering just
one period of the structure for the reference set of the
phase advance values @, j=0,1,...J per period. The each
component of a traveling wave field has real and imagi-
nary parts:

E, (r,2)=BE(r,2)- IbE/(r,2), E, (r,2)= E 1 (152). 3)

For the structures with mirror symmetry in the pe-
riod the real and the imaginary parts distributions along
the axis have a conjugated parity. For definiteness we
will assume distribution of the real part as the even
function.

In Fig.2,a the cell of the deflecting structure for the
PITZ Transverse Deflecting System [4] is shown to-
gether with the geometry for numerical simulations,
Fig.2,b, and an example for real and imaginary E, parts
distributions, Fig.2,c.
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Fig.2. The cell of the deflecting structure(a), the
geometry for numerical simulations (b) and an example
for real and imaginary parts distributions (c)
for the first monopole wave with 6=15°

If the fields distributions E; (3) of the traveling
waves are known, for the structure with N periods a
standing wave distribution E,,, for the m™ mode can be
found as:

E.,(z)=2BE,,(z)cos(ng,)+ 2BE , (2)sin(ng,). (4)

- iJ z]J i, z'=z+ nd, q, = Q, m,n=0,1,..N.
2 2 N

Substituting the expression (4) for longitudinal field
of the m™ mode into (2), after transformation one can
find for the loss factor £, value:
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The huge formula (5) with (6) and (7) describes the
general case, including both synchronous (4,= ¢,) and
not synchronous interaction between the wave with and
relativistic particle. In the case of synchronous interac-
tion this formula is very simple:

k] _ NZ([ee + (_ 1)nb100) (8)
mmax 4 UO >
where nb is the integer part of ratio (27 f,,)/(6, f,), where
6, and f, are the operating phase advance and operating
frequency of the structure, respectively.

The kick factor value for dipole-like modes can be
estimated with the same way, calculating E, in integrals
of interactions (6) at some distance r., see (2).

Integrals of interaction (6) are calculated at the set of
reference @ values and there are the smooth 6, and ¢,
functions. For intermediate 6,, values in the long struc-
ture interpolation is used.

3. MODEL VERIFICATION

To check the correctness of the proposed model and
huge intermediate transformation to the final expression
(5), we can directly simulate the field distributions in
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the relatively short N=16 or N=46 cells structures [4],
for the first pass-bands of monopole modes 7M,, and
dipole modes HE;;, assuming standing wave regime,
and calculate £, and ¥, values for each mode from (2).
The models for these direct simulations are shown in
Fig.3.

Fig.3. The models for direct fields distributions simula-
tions in the first TM01 and HE11 pass-bands

The results of this comparison are plotted in Fig.4.
The solid lines just connect points of k', and k',, values
for discrete 6, values.
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Fig.4 The K,, and K., values calculated from direct field

distributions simulations (blue) and from (5) (magenta)

for N=16 cells (a,c) and N=46 (b,d). The green trian-
gles are for the full end cell termination

One can see in Fig.4 a good coincidence of results,
obtained with different approaches. For the most impor-
tant the maximal kl,,, and K, values the relative differ-
ence is inside of 5%. The huge formula (5) for £, and
k', values in long periodical structures is correct and can
be used for estimations.

As one can see from the Fig.4, K, and I, depend-
ences on 6, have a bell-like shape. The width of this
bell is narrower for longer structure, but all time three
modes belong to the peak.

4. INTERACTION OF PARTICLE WITH
WAVE IN THE FINITE STRUCTURE

In the aperture of periodical structure the component
E. both for traveling E,and for standing £, waves can be
expanded into series over space harmonics [5]:
iq,.z
Ef_,-(x,y,z) =€ ajp(x’y)e ‘.,

p

€
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qp,m = qo,m + 2pp9 p= O’:l: 1""5:t r .

For each space harmonic in (9) we can directly esti-
mate the integral of interaction S(6,,) with the relativis-
tic particle, which is in the numerator for k]m and &,
values in (2).
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The real, the imaginary parts and the amplitude of
S(6,,,) for the first monopole pass-band TMy; in the de-
flecting structure [4] are plotted in Fig.5.
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Fig.5. The plots of the real (blue), the imaginary (red)
parts and the amplitude (green) for integral of interac-
tion S(0,,,) for the first monopole pass band in the de-
flecting structure [4], N=46

One can see in Fig.5 for the S(8,,) amplitude the
same bell-like shape, as in Fig.4. As one can directly
find from (10), the maximal value |S(6,,,)| s =Nd/2 and
is realized for the synchronous case 6,,/d=w,/c. The
width of the main peak, see Fig.5, is of d0=4 /N and for
longer structures this peak is narrowed. The modes
separations in the structure is of 77N and all time at least
three modes belong to the main peak.

The decreasing adjacent peaks, Fig.5, have the width
of d6=27/N. The nearest peaks have the maximal value
of Nd/(37). With respect the with to the main peak, the
nearest adjacent peaks are 3772 ~ 4.5 times lower. In the
expressions (2) interaction S(,,,) is in the second power
and all modes, which do not belong to the 2/N vicinity
of the synchronous point, will have at least one order
lower £, and ¥, values.

5. COMPARISON WITH THE RESULTS
OF TIME DOMAIN SIMULATIONS

To check this method additionally, HOM parameters
simulations were performed for the LOLA 1V deflecting
structure [3] in the frequency range f < 4.5 f and our
results were compared with the results, obtained for the
same structure with the time domain approach [6]. For
comparison our simulations were performed for a refer-
ence structure, which is in 2D approximation, similar to
one, shown in Fig.2, but without holes for deflection
plane stabilization. For the monopole modes in the refer-
ence LOLA IV structure calculated dispersion diagram is
shown in Fig.6. The main reason for such 2D approxima-
tion is only limitations for software, used in [6].

In Fig.6 all zones for all points of synchronous inter-
actions for different branches of the dispersion diagram
are marked with numbers. Numerical results of com-
parison are presented in the Table, where N, is the
brunch number in the dispersion diagram (see Fig.6).
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Fig.6. Dispersion diagram for monopole modes in the
reference LOLA IV structure

The loss factor values for the monopole modes with
K, > 1 V/(pC) in the LOLA IV reference structure.
Results from [6] are presented for comparison

Nb f;n’ klm’ klmmaxy Q f;n’ [6]’ kl’n9[6]
GHz | V/pC | VjpC " |\"GHz | v/pC

1 | 2088|135 |34.87 | 13380

1 {2092 135 |3329 | 13369

1 | 2.094 | 29.45 | 32.49 | 13363 | 2.11 | 346

1 | 2097 | 2332 | 31.70 | 13357

1 | 2099|228 |30.92 | 13352

2 | 5.064 | 3.89 | 438 | 25467 | 5.09 |3.26

2 | 5071 | 273 | 465 |25451

3 | 5557 | 466 | 525 | 13543

3 ]5555 420 |552 |13571]557 |5.76

4 | 6894 | 1.01 |3.50 |28290

4 |6890 (392 |4.02 |28113

4 | 6886 [3.12 |457 |27936]693 |47

5 | 7582|386 | 625 | 17228

5 7582|614 | 644 |17323|7.62 |64

5 | 7582 | 146 | 6.63 | 17418

8 [10492] 144 | 152 |18173| 105 |13

9 [10.930] 1.92 |3.16 | 24778 11 2.6

9 ]10.929]2.58 |2.71 | 24784

10 | 11.660 | 247 | 2.76 | 20733 | 11.7 | 2.8

10 | 11.662] 1.99 | 2.62 | 20614

For each pass in the time domain simulations just
one mode is shown. It is not a fundamental limitation,
but to show a fine modes structure for each zone of in-
teractions time domain will is required fields simula-
tions at much longer distances s > c¢/(f,+1-fn) ~ 100 m,
as it accepted usually (s>> ¢/f,, ~ 1 m). With such re-
quirement the time domain simulation for long struc-
tures with short bunches becomes a huge computational
problem. As one can see from Table, the frequency
value for interacting modes coincides with reasonable
precision. The single loss factor value &', for each pass
band coincides very well with our estimation for the
maximal loss factor value k.. (8) for this pass band.
But, our simulations show in the vicinity of synchro-
nous point at each pass band at least two modes with &/,
values, comparable with S

As the result, over all loss factor value, summarized
over all modes at the pass band, from our approach is
more than two times larger, as from usual time domain
simulations. For our approach such difference is moti-
vated well both with the physical consideration in Sec-
tion 5 and direct numerical verification in Section 4.
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Similar comparison has been performed for kick fac-
tor values &, for the same LOLA IV reference structure.
The same coincidence in frequencies for synchronous
points and kick factor values, and the same difference in
the number of interacting modes at each pass band. Also
the same is the conclusion for over all kick factor value
for each pass band — our approach provides more than
two times value, as compared to usual medium s range
tine domain simulations.

5.1. MODE MIXING EFFECT ON LOSS
AND KICK FACTORS VALUES

The total modes spectrum of the structure, especially
in high frequency region, is rather complicated. But 2D
approximation reference structure option we can clearly
separate monopole and dipole modes, which are mostly
dangerous for the multi bunch effects. And in reference
structures all multi — pole modes have £,=0 at the struc-
ture axis.

In the real 3D structure all modes have more com-
plicated field distributions. If a 3D addition (with re-
spect to 2D reference structure) is not so strong, one can
treat fields in the 3D structure with mode mixing effect,
considering 3D structure fields as composed from refer-
ence modes of 2D reference structure.

Loss and kick factor values were calculated in the
real 3D LOLA IV geometry, taking into account holes
for deflecting plane stabilization, see Fig.2, in the same
frequency range f'< 4.5 f,. The first pass bands both for
monopole and dipole modes are well separated in fre-
quency from another branches of dispersion diagram,
resulting in £, and £, values with negligible difference
between real 3D and approximated 2D structures. For
higher pass bands with frequencies /> 1.5 fj real mode
mixing effect exists, resulting in more smooth loss fac-
tor redistribution between branches of the total disper-
sion diagram.

Basing on the theory of coupled modes, but omitting
huge formulas and transformations for multi coupled
modes analysis, and results of direct simulations for 3D
real structures and 2D approximations, qualitative con-
clusion can be done. For not strong 3D deviations from
2D approximated structure geometry the mode mixing
effect produce more smooth distribution for loss factor
values k’m between branches of the total dispersion dia-
gram for 3D structure. But the over all loss factor value
in the wide frequency range is the same, both for real
3D and approximated 2D structures, with the precision
in several percents.

For kick factor values such conclusion is not valid
and large difference, than several percents, was detected
between 3D and 2D approximations.

SUMMARY

The method for HOM parameters estimations in pe-
riodical structures is developed. HOM parameters are
calculated in the wide frequency range at one structure
period for the reference set of the phase advance values,
with real 3D geometry. For the structure with arbitrary
length HOM parameters are interpolated basing on pe-
riodicity properties, meaning the problem dimensional-
ity decreasing for simulations. Wake fields excitation is
treated as an interaction of particle with finite length
periodical structure. It results in the detection of the fine
structure for interacting modes in vicinities of each
point of synchronous interaction at different modes pass
bands. Detection of such fine modes structure with time
domain approach for long structures with a short
bunches will require enormous efforts in simulations.

The method was applied for HOM parameters esti-
mation and study in the X-FEL TDS [4].

This work was supported by the Ministry of Educa-
tion and Science of the Russian Federation, the contract
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METO/ BBIUUCJIEHUSA XAPAKTEPUCTUK BBICHINX MO/ B TIEPUOJUYECKUX CTPYKTYPAX
B.B. Ilapamonoe, /I.B. /lenucenxo

BU-xapakrepuctuku Boiciux Mol konebanuit (BMK) paccunrtansr B pesxume Oeryiieid BOJHBI B IIMPOKOM JAUAIIa30HE Yac-
TOT Ha OJHOM IEPHOJAE CTPYKTYPHI B TPEXMEPHOM MPHOIMKEHHH IJIsi ONMOPHOTo Habopa HaOeroB (a3wl Mois Ha mepuon. s
CTPYKTYPBI C IPOU3BOJILHBIM unciioM nepuosoB BMK napameTpsl HHTEpHOAMPYIOTCS UCXOS U3 CBOMCTB NMEPUOAUYHOCTH. Pa3z-
pelieHne MeTo/ia He 3aBUCHT OT YHCJIa IIEPUOA0B B CTPYKType M MO3BOJSIET BEIIBUTH BaxkHbIe ocobenHocTH BMK B miumMHHEIX
CTPYKTypax M Auana3oHe BBICOKHX YacTOT.

METO/J OBYHUCJIEHHS XAPAKTEPUCTUK BUIIIUX MO/ Y IIEPIOJJUYHUX CTPYKTYPAX
B.B. Ilapamonos, /I.B. /lenucenko
BU-xapaxrepuctukn Bumux Mox konuBaHb (BMK) po3paxoBani B pexxumi 6irydoi XBrili B IIMPOKOMY Iialla3oHi 4acTOT HA
OJTHOMY IIepioAi CTPYKTYypH B TPUBUMIPHOMY HaOIMKEHHI U ONOPHOT0 Habopy HaOiriB ¢asu mois Ha nepion. I CTpyKTypH 3
JOBUIBHUM umciioM mepioniB BMK napameTpu iHTeprosipyIoThCsi BUXOSUH 3 BIACTHBOCTEH mepioanyHocTi. JI03Bin MeTony He
3aJIeKUTH BiJl YUCIIa NEPioiB B CTPYKTYpI i O3BOJISE BUABUTH BaxkinBi ocobnmBocti BMK y moBrux crpykrypax i niamasosi
BHCOKHX 4acTOT.

86 ISSN 1562-6016. BAHT. 2012. Ne4(80)



