УДК 621.384/6 (075)

ВЫСШИЕ ТИПЫ ВОЛН В КРУГЛОМ ДИАФРАГМИРОВАННОМ ВОЛНОВОДЕ С ЭЛЕКТРИЧЕСКОЙ И МАГНИТНОЙ СВЯЗЬЮ

М.А. Гусарова, Р.О. Болгов, Д.С. Каменщиков, Н.П. Собенин, С.Е. Топорков Национальный исследовательский ядерный университет МИФИ, Москва, Россия E-mail: sobenin@mail.ru

Приведены результаты расчетов электродинамических характеристик (ЭДХ) волн высших типов (ВВТ) круглого диафрагмированного волновода (КДВ) с магнитной связью. Рассматриваются структуры как с параллельной, так и с перпендикулярной ориентацией щелей связи. Представлено сравнение полученных результатов с аналогичными для классического КДВ. Для наиболее опасных дипольных мод представлены результаты расчёта коэффициентов потерь и наведённых потенциалов.

1. ВВЕДЕНИЕ

В любой ускоряющей структуре происходит эффективная передача энергии внешнего генератора ускоряемым частицам. Одновременно происходит и возбуждение пучком электромагнитных полей в самой структуре, причем поля возбуждаются не только на частоте основной ускоряющей волны, но и на видах колебаний, обладающих аксиальной симметрией и имеющих поляризацию. Эти моды называют волнами высших типов. Воздействие этих колебаний на динамику пучка может приводить к потерям энергии частиц и развитию его продольных и поперечных неустойчивостей [2].

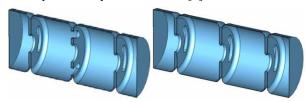


Рис.1. Варианты структур типа КДВ с магнитной связью

В качестве ускоряющей структуры для линейных ускорителей электронов обычно используется круглый диафрагмированный волновод, работающий в режиме бегущей волны, или бипериодическая ускоряющая структура (БУС), работающая в режиме стоячей волны. В первом случае связь между ячейками структуры емкостная и дисперсионная характеристика на волне Е01 положительная. Во втором случае превалирует магнитная связь между ячейками и дисперсионная характеристика отрицательная. Можно в КДВ, предназначенном для работы в режиме бегущей волны, увеличить связь между ячейками в месте концентрации магнитного поля, и тем самым увеличить значение групповой скорости. Такая ускоряющая структура на бегущей волне с магнитной связью (КДВМ-О) сочетает в себе преимущества структуры на бегущей волне с электрической связью (малое время заполнения ВЧмощностью) и структуры на стоячей волне (большое шунтовое сопротивление). На Рис.1. показаны два варианта реализации такой структуры [1].

2. КОЭФФИЦИЕНТ ПОТЕРЬ И НАВЕДЁННЫЕ ПОТЕНЦИАЛЫ

Для сравнения влияния наиболее опасных дипольных волн на пучок в структуре КДВМ-О были проведены расчеты коэффициентов потерь и наведённых потенциалов. Для оценки величины потерь ускоряемого пучка на излучение той или иной моды вводятся продольный и поперечный коэффициенты потерь, определяемые в соответствии с выражениями:

$$k_{\parallel n} = \frac{\omega_n r_{\sigma, \hat{yo}}}{4Q_n}, k_{\perp n} = \frac{\omega_n r_{\sigma, \hat{yo}, \perp}}{4Q_n}, \tag{1}$$

где Q_n — собственная добротность n-й моды: ω_n — циклическая частота n-й моды. Заметим, что этот параметр не зависит от характеристик ускоряемого пучка, а определяется только геометрией структуры.

Наведённые поля, вызванные изменением геометрии резонатора, являются сложными функциями координат и времени. Введение наведённых потенциалов облегчает эту проблему. Являясь независимыми от времени функциями позиции в сгустке, они определяют момент импульса в данной точке. Функция наведённого потенциала — δ , характеризуется геометрическим изменением и может использоваться как функция Грина для определения суммарного потенциала в случае произвольного распределения заряда:

$$W_{\parallel}(s) = -\frac{1}{qr} \int_{-\infty}^{\infty} (\overline{E} + v \times \overline{B})_{\perp} dz, \qquad (2)$$

где q — элементарный заряд; r — радиальная координата. Коэффициент потерь для волны E_{110} с наибольшим значением поперечного шунтового сопротивления имеет максимальное значение в структуре с параллельной ориентацией щелей связи. Это на 20% больше, чем в классических структурах КДВ.

3. ЭЛЕКТРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВОЛН ВЫСШИХ ТИПОВ

Ниже рассмотрены электродинамические характеристики волн высших типов в КДВМ-О с различной ориентацией щелей связи, а также в классическом КДВ. На Рис.2-4 изображены дисперсионные зависимости структуры КДВМ-О с перпендикуляр-

ISSN 1562-6016. BAHT. 2012. №3(79)

ной и параллельной ориентациями щелей связи и структуры классического КДВ.

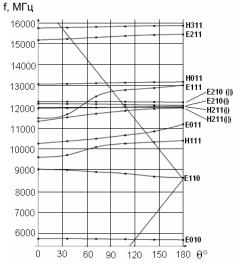


Рис.2. Дисперсионные кривые для КДВМ-О с перпендикулярной ориентацией щелей связи при $a/\lambda = 0,1$

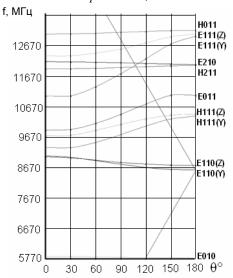


Рис.3. Дисперсионные кривые для КДВМ-О с параллельной ориентацией щелей связи при $a/\lambda = 0,1$

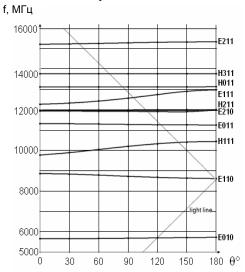


Рис.4. Дисперсионные кривые для классического $K \mathcal{L} B$ при $a/\lambda = 0, 1$

Таблица 1 Характеристики ВВТ в структуре КДВМ-О при $\beta_{\phi} = 1$ (перпендикулярная ориентация щелей)

Тип волны	f, МГц	Q	r _{III} , MOm/m	$\frac{k,}{B}$ $nK_{\mathcal{N}} \cdot M$
E_{110}	8635	8872	28,32	43,3
H ₁₁₁	10330	12492	0,22	0,29
E ₀₁₁	10836	7652	1,44	4,65
$H_{211}()$	11814	12218	0,07	0,12
H ₂₁₁	11985	12190	0,02	0,03
E_{210}	12109	15065	0,08	0,12
$E_{210}()$	12238	15758	0,04	0,04
E_{111}	12643	9789	2,42	4,92
H_{011}	13120	17202	0	0
E ₂₁₁	15218	9600	0,07	0,17
H_{311}	15758	12574	5.10-5	$1,03\cdot10^{-4}$

 ${\it Taблица~2}$ ${\it Xapaкmepucmuku~BBT~6~cmpykmype~KДBM-O}$ ${\it npu~\beta_{\phi}=1~(napaллельная~opuehmaция~щелей)}$

Тип волны	f, МГц	Q	r _{III} , MOM/M	$\frac{k,}{B}$ $\frac{B}{nK\pi \cdot M}$
E ₁₁₀ (Y)	8586	8682	37,5	58,2
$E_{110}(Z)$	8739	10223	41,8	56,1
H ₁₁₁ (Y)	10264	12574	0,19	0,25
$H_{111}(Z)$	10390	13052	0,09	0,11
H ₂₁₁	11983	12243	0,03	0,04
E ₂₁₀	12089	14448	0,14	0,18
$E_{111}(Y)$	12242	8846	4,0	8,69
$E_{111}(Z)$	12567	8947	4,13	9,12

Таблица 3 Характеристики ВВТ в структуре КДВ при $\beta_{\phi}{=}1$

паралитериетини 221 в етруппуре 1442 при р ϕ 1						
Тип волны	f, МГц	Q	r _{III} , MOM/M	$\frac{k,}{B}$ $\frac{B}{nK_{I} \cdot M}$		
E_{110}	8614	13838	44,96	44,0		
H ₁₁₁	10410	12809	0,02	0,34		
E ₀₁₁	11263	9205	4,72	9,08		
E ₂₁₀	11907	14209	0,09	0,13		
H ₂₁₁	11998	12241	0	0		
E ₁₁₁	12567	8621	4,40	10,70		
H ₀₁₁	13121	18852	0	0		
H ₃₁₁	13764	13121	0	0		
E ₂₁₁	15233	9911	0,07	0,18		

Для каждой характеристической точки на дисперсионной кривой, соответствующей пересечению этой кривой и линии скорости света, определены значения резонансной частоты, собственной добротности, шунтового сопротивления и коэффициента потерь на излучение. Результаты представлены в Табл. 1-3. В расчётах использовался резонансный макет с видом колебаний $2\pi/3$ на рабочей частоте 5712 МГц при относительной фазовой скорости волны β_{ϕ} , равной единице. Отношение радиуса диафрагмы структуры к длине волны основной моды

 a/λ выбрано равным 0,1. Для мультипольных волн вычислялось поперечное погонное шунтовое сопротивление, а для монопольных — продольное погонное шунтовое сопротивление.

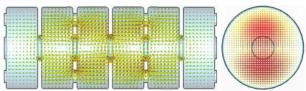


Рис.5. Распределение электрического поля в структуре КДВМ-О дипольной волны E_{110}

На Рис.5 представлено распределение электрического поля наиболее опасной дипольной волны структуры КДВМ-О с перпендикулярной ориентацией щелей связи.

ЗАКЛЮЧЕНИЕ

Рассмотрены электродинамические характеристики в ускоряющих структурах типа КДВ и КДВМ-О с различной ориентацией щелей связи. Были рассчитаны продольное и поперечное шунтовые сопротивления (для монопольных и мультипольных волн соответственно) для синхронных с частицей волн высших типов. Наибольшее влияние на динамику пучка оказывает дипольная волна Е₁₁, что подтвер-

ждается известными теоретическими и экспериментальными данными.

Структура КДВМ-О наиболее предпочтительна для ускорения электронов, нежели обычный КДВ, так как имеет более высокое значение шунтового сопротивления на основной волне E_{010} . Для сравнения влияния наиболее опасных дипольных волн на пучок в такой структуре были проведены расчеты коэффициентов потерь и наведенных потенциалов. Видно, что коэффициент потерь для волны E_{110} имеет максимальное значение в структуре с параллельной ориентацией щелей связи, что на 20 % больше, чем в структурах КДВ и КДВМ-О с перпендикулярной ориентацией щелей связи.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. R.O. Bolgov, et al. Magnetic Coupled Disk-Loaded Waveguide // XXII Russian Particle Accelerator Conference, Protvino, 2010, p.319-321.
- 2. В.И. Каминский, Н.П. Собенин. *Высшие типы волн в элементах ускоряющих структур*. М.: МИФИ, 2002, с.43-57.
- 3. О.А. Вальднер, Н.П. Собенин. *Диафрагмирован*ные волноводы: Справочник. М: «Энергоатомиздат», 1991.

Статья поступила в редакцию 23.09.2011 г.

HIGHER ORDER MODES IN THE DISK-LOADED WAVEGUIDE WITH ELECTRICAL AND MAGNETIC COUPLE

M.A. Gusarova, R.O. Bolgov, D.S. Kamenshikov, N.P. Sobenin, S.E. Toporkov

The higher order modes electrodynamics parameters of a magnetic coupled disk-loaded waveguide (DLW-M) have been presented. The structures with both parallel and perpendicular orientation of coupling slots are considered. The results for the DLW-M structure are compared with the classical DLW structure. Loss coefficients and induced potentials for the most dangerous dipole modes were calculated.

ВИЩІ ТИПИ ХВИЛЬ У КРУГЛОМУ ДІАФРАГМОВАНОМУ ХВИЛЕВОДІ З ЕЛЕКТРИЧНИМ І МАГНІТНИМ ЗВ'ЯЗКОМ

М.А. Гусарова, Р.О. Болгов, Д.С. Каменщиков, М.П. Собєнін, С.Є. Топорков

Наведено результати розрахунків електродинамічних характеристик (ЕДХ) хвиль вищих типів (ХВТ) круглого діафрагмованого хвилеводу (КДХ) з магнітним зв'язком. Розглядаються структури як з паралельною, так і з перпендикулярною орієнтацією щілин зв'язку. Представлено порівняння отриманих результатів з аналогічними для класичного КДХ. Для найбільш небезпечних дипольних мод представлені результати розрахунку коефіцієнтів втрат і наведених потенціалів.