УДК 539.375:622.236

ДЕФОРМИРОВАНИЕ И РАЗРУШЕНИЕ ГОРНЫХ ПОРОД В УСЛОВИЯХ ОБЪЕМНОГО НЕРАВНОКОМПОНЕНТНОГО СЖАТИЯ

д.т.н. Ревва В.Н. (ИФГП НАНУ)

Наведені основні результати теоретичних та експериментальних досліджень автора з обраної тематики.

ROCK DEFORMATION AND FRACTURE UNDER TRUE TRIAXIAL COMPRESSION

Revva V.N.

The author's main results of theoretical and experimental research in the field are presented.

При подземной разработке полезных ископаемых большинство процессов связано с деформированием и разрушением горных пород в условиях сложного напряженного состояния, а именно, трехосного неравнокомпонентного сжатия, поэтому теоретические, лабораторные и натурные исследования в этом направлении, несомненно, актуальны.

С увеличением глубины разработки угольных пластов, реструктуризацией угольной промышленности и закрытием шахт, и связанным с этим их затоплением, внедрением нетрадиционных технологий добычи указанные проблемы значительно усложняются.

Следует также отметить, что деформирование и разрушение горных пород, в отличие от других твердых тел, имеют свои специфические особенности, связанные, прежде всего, с дефектностью, неоднородностью, гетерогенностью среды и действием в горном массиве, особенно возле горных выработок, неравнокомпонентного объемного поля сжимающих напряжений.

В настоящей работе представлены теоретические и экспериментальные результаты автора по деформированию и разрушению горных пород в условиях объемного неравнокомпонентного сжатия.

В обзорных работах [1–3] были проанализированы теоретические и экспериментальные исследования по выбранной тематике и на их основе сформированы задачи дальнейших исследований.

Как известно, горный массив характеризуется существенной неоднородностью своей структуры, которая определяет большую изменчивость его физико-механических свойств, в том числе и упругих.

В [4–11] представлены результаты исследований по влиянию непрерывного и скачкообразного изменения упругих свойств на предельное состояние и механизм разрушения горных пород.

Для случая непрерывной неоднородности упругих свойств [4–6], когда модуль Юнга изменяется с глубиной, а коэффициент Пуассона постоянен, было установлено, что неоднородность упругих свойств приводит к умень-

шению прочности горных пород. Однако с увеличением глубины залегания пород непрерывное изменение их модулей за счет уплотнения не оказывает значительного влияния на прочностные свойства горного массива.

Для случая скачкообразного изменения упругих свойств (слоистость) [10-11] были оценены уровни коэффициентов интенсивности напряжений $k_{\rm I}$ и $k_{\rm II}$, характеризующих локальное поле упругих напряжений у тупиковой части трещин нормального отрыва и поперечного сдвига в зависимости от расположения трещины конечного размера относительно границы раздела упругих свойств.

Было установлено, что когда трещина находится в более жесткой компоненте горной породы, имеющей границу раздела упругих свойств, ей выгодно распространяться от ближнего к границе конца при действии на нее нормального растягивающего напряжения и от дальнего конца при сдвиге. Когда же трещина находится в менее жесткой компоненте, при растяжении ей выгодно стартовать с дальнего от границы конца, а при сдвиге – с ближнего. Для обоих видов напряженного состояния трещина менее склонна к распространению при удалении от границы раздела упругих свойств, чем возле нее. Для трещины в слое более жесткой горной породы при действии растягивающего напряжения наиболее выгодная ее ориентация параллельно границе раздела упругих свойств, а при сдвиге – перпендикулярно. Обратная картина наблюдается для случая трещины в менее жесткой компоненте. Таким образом, впервые было установлено существенное влияние положения трещины относительно границы раздела упругих свойств на механизм локального разрушения скачкообразно неоднородных горных пород.

Выбросы породы и газа, как правило, приурочены к границам раздела физико-механических свойств горных пород. Под действием внешней нагрузки в окрестности границы раздела возникает концентрация напряжений, зависящая от степени изменчивости свойств пород. При подходе выработки к границе раздела пород с различными свойствами на пик напряжений от неравномерности свойств накладывается пик напряжений от влияния выработки и, в момент отделения части массива взрывом, инициируется разрушение пород также за пределами взрываемого массива.

Поскольку для описания предельного состояния необходимо определять характеристику трещиностойкости материала поперечному сдвигу, т.е. вязкость скольжения $k_{\rm IIc}$, методика экспериментального определения которой для горных пород впервые была разработана и представлена в [7].

Решение задачи о предельном равновесии упругого пространства, ослабленного дисковидной трещиной, нагруженной антисимметричными напряжениями и подверженного на бесконечности действию сжимающих напряжений, позволило получить условие локального разрушения горных пород с учетом неоднородности их упругих свойств и неоднородности напряженного состояния, вызванной пригрузкой от взрывных работ [8]. Полученное условие локального разрушения использовано при разработке способа прогно-

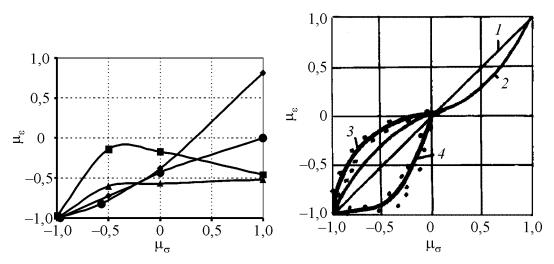
за выбросоопасности горных пород по перепаду эффективной поверхностной энергии.

При создании способа профилактической обработки выбросоопасных угольных пластов водными растворами ПАВ возникла необходимость в оценке давления нагнетания жидкости, которая позволила бы избежать гидроразрыва пласта и обеспечить его равномерное увлажнение, что существенно повысило бы эффективность способа. На основании решения задачи математической теории трещин о предельном равновесии неоднородного упругого пространства, ослабленного трещиной, нагруженной нормальными растягивающими напряжениями и подверженного на бесконечности действию сжимающих напряжений, было получено выражение для критического давления жидкости, нагнетаемой в угольный пласт, с учетом неоднородности упругих свойств массива и начальной влажности угля в виде [9]

$$P^* = \rho H(Sin^2\alpha + \lambda Cos^2\alpha) + \left[\frac{1}{\pi \lg}\gamma_0 \sum_{n=0}^{\infty} a_n w^n - \frac{1}{4}(\rho H)^2 (1-\lambda)^2 Sin^2 2\alpha\right]^{\frac{1}{2}},$$
 где
$$g = \frac{(G_1 + G_2\vartheta_1)(G_2 + G_1\vartheta_2)}{G_1G_2[G_2(\vartheta_1 + 1) + G_1(\vartheta_2 + 1)]},$$

 ρ — удельный вес вышележащих пород; H — глубина залегания; w — естественная влажность; γ_0 — эффективная поверхностная энергия абсолютно сухого угля; G_i и ϑ_i — модуль сдвига и коэффициент Пуассона породы и угля сщщтветственно; λ — коэффициент бокового распора.

Экспериментальные исследования при противовыбросной обработке пластов «Безымянный» шахты «Красный Октябрь», «Каменка» шахты «Ольховатская» и «Алмазный» шахта «Стожковская» в натурных условиях показали, что установленное в [9] критическое давление нагнетания жидкости с учетом неоднородности упругих свойств массива и естественной влажности угля P^* не приводит к гидрорасчленению угольного пласта, а обеспечивает равномерное увлажнение и снижение его выбросоопасности.


Большинство твердых тел имеют одинаковые значения пределов прочности на сжатие и растяжение, а для горных пород и углей они отличаются более чем на порядок, существенно изменяются и их другие механические характеристики. Поэтому особый интерес вызывают исследования поведения горных пород в условиях объемного сжатия при различных видах напряженного состояния.

Экспериментальные исследования проводились на установке неравнокомпонентного трехосного сжатия (УНТС) конструкции ИФГП НАН Украины, позволяющей в трех взаимно перпендикулярных направлениях создавать независимые друг от друга напряжения при замкнутой камере, в которую помещается призматический образец, и, объем которой изменяется идентично изменению объема образца [1]. На протяжении всего процесса деформирования как в допредельном, так и запредельном состояниях фиксировались прилагаемая нагрузка и деформации образца.

Исследуя широкий спектр видов напряженного состояния [1,12–14], характеризуемых параметром Надаи-Лоде $\mu_{\sigma}=2\bigg(\frac{\sigma_{2}-\sigma_{3}}{\sigma_{1}-\sigma_{3}}\bigg)-1$, где $\sigma_{1},\,\sigma_{2},\,\sigma_{3}$

главные напряжения, а также соответствующие им виды деформационного состояния $\mu_{\epsilon}=2\left(\frac{\epsilon_{2}-\epsilon_{3}}{\epsilon_{1}-\epsilon_{3}}\right)-1$, где $\epsilon_{1},\;\epsilon_{2},\;\epsilon_{3}$ – главные деформации, было ус-

тановлено (рис. 1, 2), что для горных пород несоответствие параметров вида напряженного и деформационного состояний более существенно, чем для металлов. Например, для углей и алевролитов наблюдается картина, близкая к опытам Лоде и Квини [1]. Более сложная картина для песчаников. Во всех случаях $\mu_{\sigma} \neq \mu_{\epsilon}$.

Рис. 1. Зависимость вида деформационного состояния от вида напряженного состояния для различных марок угля: $\blacksquare - \mathbb{K}$, $\blacktriangle - \mathbb{K}$, $\blacklozenge - \mathbb{T}$, $\blacklozenge -$ антрацит

Рис. 2. Зависимость вида деформационного состояния от напряженного: I – теоретическая прямая; 2 – опыты Лоде на металлах; 3 – эксперименты на угольных образцах на УНТС при сжатии; 4 – то же при разгрузке

Несоответствие параметров вида напряженного и деформационного состояний при деформировании горных пород (а также других твердых тел) при различных видах нагружения, на наш взгляд, определяется не только анизотропией, а, прежде всего различием и конкуренцией двух процессов, происходящих в нагруженном образце: течения (пластической деформации) и зарождения микротрещин. Первый процесс связан с межмолекулярными силами и происходит без разрыва химических связей под действием сдвиговых напряжений, второй — связан с разрывом химических связей под действием растягивающей составляющей.

Песчаники представляют собой полиминеральное соединение с различными типами химических связей и могут быть предоставлены в виде жестких включений — зерен кварца и пластичной матрицы — цемента. Поэтому все описанные эффекты сначала относятся к цементу, а затем с ростом давления — к кварцу. Наложение эффекта от двух материалов приводит к более сложной зависимости между μ_{σ} и μ_{ε} [см. рис. 2].

Из-за несоответствия видов напряженного и деформационного состояния по виду напряженного состояния судить о характере разрушения пород в большинстве случаев нельзя. Характер разрушения можно определить только по виду деформационного состояния. Также нельзя в полной мере оценить напряженное состояние пород по замеренным деформациям.

По характеру трещин в горном массиве можно восстановить деформационное состояние массива, на основании которого, учитывая закономерности несоответствия μ_{σ} и μ_{ε} , — определить и вид напряженного состояния. Эти данные могут иметь большое значение при геометризации тектонических нарушений, уточнении их классификации и установлении ориентировки напряжений в горном массиве и вида напряженного состояния.

Следует отметить, что при отсутствии поверхности обнажения трещины отрыва в горном массиве не возникают. Разрушение происходит путем продольного и поперечного сдвигов либо их комбинации с отрывом. Самыми сложными, очевидно, будут сдвиго-надвиговые или сдвиго-сколовые трещины, возникающие в результате комбинации продольного и поперечного сдвигов, которые распространяются при виде деформационного состояния, соответствующем обобщенному сжатию [2].

При одном и том же виде напряженного состояния деформационное состояние различно в зависимости от бокового давления. Увеличение бокового давления (гидростатического) также подавляет эффект дилатансии [2].

Итак, при деформировании горных пород в объемном поле сжимающих напряжений деформационное состояние образцов не соответствует напряженному и изменяется от обобщенного сжатия до обобщенного сдвига. Деформационное состояние обобщенного сжатия приводит к разрушению путем комбинации поперечного и продольного сдвигов и сопровождается наибольшей дилатансией. В целом с увеличением гидростатического давления дилатансия подавляется [3].

Наряду с изучением прочности горных пород определенный научный и практический интерес представляет исследование энергоемкости их деформирования и разрушения.

В результате экспериментальных исследований было установлено [1], что прочность песчаников различной степени метаморфизма, с различной пористостью зависит от вида напряженного состояния. Разрушение горных пород при обобщенном растяжении в неравнокомпонентном поле напряжений невыгодно. В условиях обобщенного сжатия с ростом бокового давления возрастает энергоемкость предельного деформирования и дилатансия,

сопровождающаяся увеличением вновь образованной поверхности и выхода мелких фракций (<0,2 мм). Наименее энергоемким является разрушение пород в области обобщенного сдвига.

При определенных соотношениях компонент тензора напряжений в горных породах наблюдается сверхпластичность. При деформировании горных пород происходит перестройка (разрыхление) структуры в плоскости сдвига и локальные фазовые превращения. С увеличением уровня гидростатического давления в осадочных породах изменяется механизм разрушения [1].

Исследования поведения горных пород за пределом прочности имеет большое значение для решения многих актуальных задач горного дела [1,11–15].

В объемном поле сжимающих напряжений на образцах угля, глинистого сланца и песчаника запредельные ветви деформирования не удается зафиксировать лишь в отдельных случаях.

В связи с тем, что неоднородность, трещиноватость и пластичность горных пород приводит к значительному несоответствию деформационного и напряженного состояний в образце, даже при одинаковом напряженном состоянии параметры запредельного деформирования (остаточная прочность и модуль спада) подвержены значительным колебаниям. В зависимости от величины бокового давления и вида напряженного состояния одна и та же порода может вести себя и как разупрочняющаяся, и как упрочняющаяся, а разрушение может быть как устойчивым, так и неустойчивым.

В шахтных условиях хрупкое разрушение и резкий сброс нагрузки часто сопровождается динамическими явлениями. Учитывая, что для угля максимум модуля спада наблюдается при $\sigma_3 \neq 0$ в области обобщенного сдвига, следует считать, что очаг хрупкого разрушения формируется в глубине массива. Песчаник сохраняет способность к динамическому разрушению как вблизи контура выработки, так и в глубине массива.

Для регистрации запредельной ветви диаграммы «напряжение-деформация» особо хрупких и газонасыщенных пород на установке УНТС использовался метод разгрузки. Зная заведомо прочность горной породы в данном напряженном состоянии по предварительным экспериментам, образец нагружался при большем боковом давлении несколько выше предела прочности, а затем осуществлялась разгрузка по σ_3 до необходимой величины. При этом, энергия запасенная в машине при нагружении образца, рассеивалась еще до разрушения образца, а последнее происходило только за счет энергии, накопленной в образце.

В результате было установлено [1], что как предельная, так и остаточная прочности газонасыщенного образца существенно ниже, чем ненасыщенного. Накопленная в газонасыщенном образце энергия меньше, чем в ненасыщенном, а затраченная на разрушение гораздо больше.

Таким образом, учет запредельной ветви деформирования [1] позволяет оценить энергоемкость и характер разрушения, остаточную прочность и не-

сущую способность породы – свойства, без которых не могут быть решены многие проблемы горного дела.

Учитывая результаты по дилатансии горных пород при разрушении [1], следует отметить, что максимумы модуля спада и максимумы дилатансии совпадают. Поэтому можно уверенно утверждать, что хрупкое разрушение с динамическим эффектом и значительным спадом напряжений наблюдается при распространении трещин сложного сдвига и сопровождается наибольшим разрыхлением и дроблением материала.

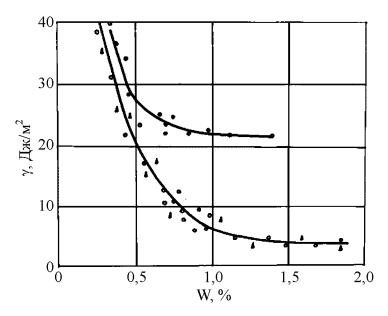
Распространение в горных породах трещин отрыва, наоборот, приводят к минимальному разрыхлению и дроблению материала, наименьшему спаду напряжений и наименьшей величине модуля спада.

С точки зрения выбросоопасности представляет определенный интерес изучение поведения горних пород при разрушении в напряженном состоянии, моделирующем призабойную зону, т.е. когда $\sigma_3 \to 0$. При этом важно оценить влияние пути подхода к такому напряженному состоянию на прочность и энергоемкость разрушения пород. Больше всего в данном случае интересует различие в характере разрушения пород путем нагрузки и разгрузки. Для оценки этого различия рассмотрено два пути: постепенное увеличение главного напряжения σ_1 при фиксированных σ_2 и σ_3 до разрушения, постепенная разгрузка, предварительно нагруженного образца, по оси наименьшего главного напряжения σ_3 до разрушения.

Установлено [15], что энергоемкость разрушения и его характер для горных пород существенно зависят от пути подхода к данному напряженному состоянию. В то же время прочность песчаника от пути нагружения не зависит.

Характерным различием разрушения при нагрузке и разгрузке является неодинаковое деформационное состояние, формирующееся перед разрушением. При нагрузке вид деформационного состояния не соответствует виду напряженного состояния (опережает его) и складывается таким образом, что $\mu_{\epsilon} = 0$, т.е. наблюдается практически чистый сдвиг. При этом плоскости разрушения направлены под углом близким к 45° к наибольшему сжимающему напряжению. При разгрузке деформационное состояние очень хорошо соответствует напряженному состоянию $\mu_{\sigma} = \mu_{\epsilon}$ и близко к обобщенному сжатию. Как было показано выше, в этом случае образуются трещины сложного сдвига. Плоскости разрушения при этом направлены под самыми различными углами к максимальному сжимающему напряжению, а некоторые почти параллельны плоскости разгрузки.

Таким образом, основное различие в поведении образцов при разгрузке и нагрузке заключается в величине накопленной энергии и виде деформационного состояния в образце. При разгрузке за счет распространения трещин сложного сдвига значительно возрастает степень дробления материала.


Все большую актуальность приобретают исследования поведения горных пород и углей в условиях объемного нагружения с учетом таких влияющих

факторов, как водо- и газонасыщение, глубина разработки, температура окружающей среды и др. [1,16–26].

Эффективная поверхностная энергия (ЭПЭ) является константой материала, интегрально учитывающая все механизмы разрушения и характеризующая сопротивляемость горных пород развитию в них трещин. Это позволяет использовать эту характеристику в качестве параметра неоднородности горного массива. На примере песчаников экспериментально было исследовано влияние структурных факторов на ЭПЭ. С этой точки зрения целесообразно выделять песчаники с преимущественно силикатным и карбонатным цементами. Величина ЭПЭ песчаников [1] с силикатным цементом имеет близкую к функциональной зависимость от содержания цемента (кварца), пористости и протяженности контактов. Для песчаников с карбонатным цементом наблюдается зависимость, близкая к функциональной, от пористости и размера зерна.

Наличие пор и трещин в песчаниках предполагает заполнение их флюидами, поэтому представляет интерес оценка влияния водо- и метанонасыщения пород на ЭПЭ и поведение их в объемном неравнокомпонентном поле сжимающих напряжений.

Экспериментальные исследования влияния водонасыщения на ЭПЭ песчаников показывают, что они гидрофильны. При увлажнении ЭПЭ песчаников [1] (рис. 3), с силикатным цементом (как правило, высокопористых) уменьшается до 8 раз. При этом наибольшее уменьшение происходит при содержании влаги 1,2–1,5%. При дальнейшем увлажнении ЭПЭ изменяется незначительно. В песчаниках с карбонатным цементом (особенно с базальным) ЭПЭ уменьшается незначительно (до 1,8 раз), при этом наибольшее снижение происходит при содержании влаги 0,5–0,75%.

Рис. 3. Зависимость ЭПЭ песчаников от влажности: • – глинисто-карбонатный цемент; о – глинисто-слюдистый цемент; \blacktriangle – кремнисто-слюдистый цемент.

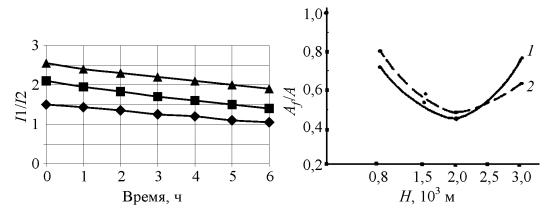
Учитывая, что газоносность песчаников колеблется в пределах 0,2–5,25 м³/т, а также то, что в естественных условиях влажность их составляет 0,4–1,6%, т.е. центры сорбции заняты водой, можно предположить, что практически весь метан в песчанике находится в свободном состоянии. И лишь в очень сухих высокопористых песчаниках большая его часть может находиться в сорбированном состоянии.

Экспериментально [1] оценено влияние метанонасыщения песчаников на снижение аффективной поверхностной энергии. При насыщении метаном песчаников с карбонатным цементом изменения поверхностной энергии очень незначительны. При этом время насыщения составляет 5–6 ч. Для песчаников с силикатным цементом снижение поверхностной энергии довольно значительно (до 4 раз), а насыщение происходит через 10–12 ч. Таким образом, в отсутствие воды метан довольно сильно снижает поверхностную энергию песчаников, однако слабее, чем вода. При их совместном воздействии, вода, в силу большей энергии сорбции по сравнению с метаном, изолирует внутреннюю поверхность песчаников, поэтому основная масса метана находится в свободном состоянии.

Давление порового флюида уменьшает нормальное напряжение, но не оказывает влияния на касательные напряжения, что, в конечном итоге, приводит к охрупчиванию, так как для меньшего нормального напряжения существующие касательные напряжения вызовут разрушающую текучесть по границам зерен. Для непроницаемых пород (песчаники с карбонатным цементом) правило эффективных напряжений недействительно и механический эффект отсутствует. В этом случае проявляется лишь эффект Ребиндера (пластификация).

Экспериментальное исследование [1,16–19] разрушения водо- и метанонасыщенных песчаников в объёмном поле сжимающих напряжений, а также при одноосном сжатии, разрыве и сдвиге позволило установить следующее.

Основное различие влияния воды и газа сводится к тому, что их влияние на физико-механические свойства пород в корне противоположно: водонасыщение снижает модуль упругости и модуль сдвига, газонасыщение их увеличивает; водонасыщение приводит к пластификации пород, газонасыщение — к ее уменьшению и охрупчиванию; водонасыщение локализует разрушение в одной плоскости и приводит к разрушению путём скольжения, газонасыщение интенсифицирует трещинообразование по всему объёму образца, разрушение носит взрывоподобный характер, трещины близки к трещинам отрыва.


Особый интерес представляет изучение влияния вида напряженного состояния углей, находящихся в предельном состоянии, на их сорбционные свойства.

На установке УНТС [20–22] была испытана серия образцов углей, где моделировалось все виды напряженного состояния. Сорбционные свойства испытанных образцов определялись на ЯМР-спектрометре широких линий.

В результате экспериментальных исследований (рис. 4) было установлено, что сорбционная способность угля после обобщенного сдвига наименьшая, а

скорость десорбции – наибольшая. Изменение сорбционных свойств угля после разрушения говорит о том, что в его структуре идут изменения не только на макро-, но и на микроуровне – происходит уменьшение сорбционных центров. Наибольшее изменение в структуре углей вызывает обобщенный сдвиг.

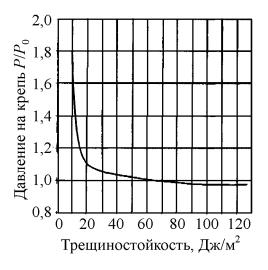

В результате физического моделирования на УНТС установлено [23–24], что с увеличением глубины залегания углей возрастают их упругие свойства и прочность и проявляется тенденция к более вязкому разрушению угля (рис. 5).

Рис. 4. Зависимость от времени интенсивностей линий спектров ЯМР метанонасыщенных образцов углей: ▲ – из целика; ■ – после обобщенного сжатия; ◆ – после обобщенного сдвига

Рис. 5. Зависимость отношения энергии формоизменения к полной энергии деформирования угольных образцов пл. Песчанка (I) и пл. Андреевский (2) от глубины залегания пластов

Термонапряжения оказывают существенное влияние на устойчивость горных выработок при перепадах температур горных пород и окружающей среды больше 100°С. Влияние температуры на предельное состояние горных пород тем значительнее, чем меньше уровень их трещиностойкости [25,26] (рис. 6).

Рис. 6. Зависимость давления на крепь от уровня трещиностойкости (ЭПЭ) горной породы в окрестности выработки при $T_1 = 300$ °C

Основные научные результаты, представленные в настоящем обзоре, нашли свое отражение при разработке способов, методических указаний и нормативных документов, которые связаны с прогнозом и управлением состоянием горного массива и внедрены на ряде угольных шахт [27–33].

СПИСОК ЛИТЕРАТУРЫ

- 1. Разрушение горных пород в объемном поле сжимающих напряжений / А.Д. Алексеев, В.Н. Ревва, Н.А. Рязанцев. Киев: Наукова думка, 1989. 168 с.
- 2. Ревва В.Н. Экспериментальные исследования горных пород в условиях объемного неравнокомпонентного нагружения//Горнометаллургические проблемы Донбасса: Сб. научн. тр. / ДНТУ Донецк: ИНФО. 1995. №1. С.46 58.
- 3. Ревва В.Н., Молодецкий А.В. Деформирование и разрушение горных пород и углей при объемном нагружении // Физико-технические проблемы горного производства. Донецк: ИФГП НАНУ. 2007. №10. С. 81–94.
- 4. Журавлев В.І. Ревва В.М. Крихке руйнування тіла при дії на щілину неурівноважених сил // Теоретична і прикладна механіка. — 1972. — №3.— С. 13–20.
- 5. Алексеев А.Д., Недодаев Н.В., Дуброва С.Б., Ревва В.Н. Поведение горных пород при неравнокомпонентном объемном нагружении и механизм разрушения разномодульных сред. // Сб. докл. Всесоюз. конф. «Механика разрушения горных пород». Фрунзе: Илим. 1980. С. 380–386.
- 6. Алексеев А.Д., Ревва В.Н. Влияние неоднородности материала на вязкость разрушения. // Трещиностойкость материалов и элементов конструкций. Киев: Наукова думка, 1980. С. 199–203.
- 7. Алексеев А.Д., Ревва В.Н., Экспериментальные исследования вязкости скольжения хрупких тел // ФХММ. 1980. №2. С. 105–107.
- 8. Алексеев А.Д., Ревва В.Н., Бойко И.А. Вязкость скольжения разномодульных горных пород // Сб. науч. трудов «Аналитические и численные исследования в механике горных пород». Новосибирск: ИГД СО АН СССР. 1981. С. 88–90.
- 9. Алексеев А.Д., Ревва В.Н., Стариков Г.П. Аналитический расчет давления жидкости, нагнетаемый в трещину, расположенную на границе раздела разномодульных сред // Сб. «Аналитические методы и применение ЭВМ в механике горных пород». Новосибирск: ИГД СО АН СССР. – 1982. – С. 3–5.
- Alexeev A.D., Revva V.N., Astrov-Shumilov C.K., Gryaduchii Y.B., Khamulyak V.G. Investigation of the mechanism of discrete media fracture with the example of rock failure//Proceedings of the first international forum on DDA. Berkley/California/USA. 1996. P. 480–487.
- 11. Alexeev A.D., Revva V.N., Gryaduchii Y.B., Khabanov A.N. Stady of the Mechanism of Destruction of Rock with a Discrete Inhomogeneity//Proceedings of the Second International Conference on DDA. Kyoto/Japan. 1997. P. 448 450.
- 12. Alexeev A.D., Revva V.N., Alysev N.A., Zhitlyonok D.M. True triaxial loading apparatus and its aplication to coal outburst prediction//International Journal of Coal Geology. 2004. N58. P. 245 250.
- 13. Алексеев А.Д., Кузнецов Э.Н., Ревва В.Н., Соколов К.И. Установка для испытания призматических образцов на трехосное сжатие // Физика и техника высоких давлений. -1995. T.7. N
 ho 1. C. 64-66.

- 14. Alexeev A.D., Revva V.N., Bachurin, Prokhorov I.Y. The effect of stress state factor on fracture of sandstones under true triaxial loading // Int. J. Fract.. 2008. 149. C. 1–10.
- 15. Алексеев А.Д., Ревва В.Н., Фролов О.В. Влияние истории нагружения на прочностные свойства образцов горных пород в условиях объемного неравнокомпонентного сжатия//Вісті Донецького гірничого інституту. Донецк: ДНТУ. 2004. №1. С. 112—115.
- 16. Ревва В.Н., Недодаев Н.В., Ермаков В.Н., Улицкий О.А. Изменение физикомеханических свойств угля и вмещающих пород при водонасыщении // Известия Донецкого горного института. 1999. №1. С. 65–68.
- 17. Ревва В.Н., Недодаев Н.В., Борисенко Э.В., Ермаков В.Н., Улицкий О.А. Влияние водонасыщения на физико-механические свойства структурно-нарушенных горных пород // Известия Донецкого горного института. − 1999. − №3. − С. 47–48.
- 18. Кольчик Е.И., Ревва В.Н., Костенко В.К., Кольчик А.Е. Влияние водонасыщенности пород на их механические свойства // Вісті Донецького гірничого інституту. 2007. №1. С. 64–69.
- 19. Алексеев А.Д., Ревва В.Н., Володарская Е.В., Юрченко В.М. Выход газа из твердого раствора в объем и на поверхность пор и трещин // Физика и техника высоких давлений: Научн. журнал / ДонФТИ АН Украины. Харьков: ФТИНТ АН Украины. 1992. Т.2. №4. С. 83—92.
- 20. Алексеев А.Д., Ревва В.Н., Ульянова Е.В. Влияние давления на сорбционные свойства углей // Физика и техника высоких давлений. 2001. Т.11. №1. С. 9–11.
- 21. Ревва В.Н., Ульянова Е.В., Бачурин Л.Л., Кольчик И.Е. Влияние вида напряженного состояния на фазовое состояние метана в угле при его разрушении // Физико-технические проблемы горного производства. Донецк: ИФГП НАНУ. 2005. №8. с. 92 95.
- 22. Ревва В.Н., Ульянова Е.В., Васильковский В.В., Дегтярь С.Е. Влияние вида напряженного состояния на сорбционные свойства углей при их разрушении в условиях объемного неравнокомпонентного сжатия // Физико-технические проблемы горного производства. Донецк: ИФГП НАНУ. 2005. №8. с. 92 95.
- 23. Алексеев А.Д., Ревва В.Н., Рязанцев Н.А. Характер разрушения углей с увеличением глубины разработки пластов//Физика и техника высоких давлений: Сб. научн. трудов/ДонФТИ АН УССР. Киев: Наукова думка. 1989, №32. С. 49–52.
- 24. Ревва В.Н., Стариков Г.П., Алексеев А.Д. Изменение механических свойств углей с увеличением глубины их залегания//Физика и техника высоких давлений: Республ.научн.ж-л/ДонФТИ АН УССР. Киев: Наукова думка. 1991, том 1, №3. С. 43 46.
- 25. Ревва В.Н. Влияние температуры на предельное состояние породного массива в окрестности горной выработки//Физика и техника высоких давлений. 1977. Т.7. №2. С. 133–136.
- 26. Ревва В.Н. Оценка устойчивости кровли в окрестности горных выработок//Физика и техника высоких давлений. 1997. Т.7. №4. С. 114—116.
- 27. Способ определения степени упрочнения малоустойчивой кровли горной выработки: А.с. 1724881 СССР, МКИ Е21Д11/02.20/00 / АД. Алексеев, В.Н. Ревва, Е.В. Ульянова, Н.А. Рязанцев (СССР). — №4692258/03; Заявлено 16.05.89; Опубл. 07.04.92, Бюл. №13. — 4 с.
- 28. Способ определения удельной поверхностной энергии горных пород: А.с. 1747992 СССР, МКИ G01N3/00 / А.Д. Алексеев, В.Н. Ревва, Н.А. Рязанцев,

Прогноз и управление состоянием горного массива

- Г.П. Стариков (СССР). №4797578/28; Заявлено 28.11.89; Опубл. 15.07.92, Бюл. №26. 4 с.
- 29. Спосіб визначення викидонебезпечності вугільних пластів. Патент на винахід 19119, Україна, E21F5/00 / А.Д. Алєксєєв, Г.Н. Фейт, Г.П. Старіков, Г.Г. Смірнова, О.М. Маліннікова, В.М. Ревва. №4851738/54; Заявлено 23.09.93; Опубл. 25.12.97, Бюл. №6. 2 с.
- 30. Методические указания по региональной гидрообработке выбросоопасных угольных пластов водным раствором ПАВ через скважины, пробуренные из полевых выработок / А.Д. Алексеев, Н.М. Петухов, А.А. Гребенщиков, А.Е. Жуков, В.А. Канин, С.Г. Лунев, Г.П. Стариков, В.Н. Ревва. Донецк: Препринт ДонФТИ АН УССР, 89-12, 1989. 13 с.
- 31. Методические указания по обработке выбросоопасных угольных пластов в зонах геологических нарушений и повышенного горного давления водными растворами ПАВ / А.Д. Алексеев, Г.П. Стариков, С.Г. Лунев, Н.В. Недодаев, А.И. Сердюков, В.Н. Ревва. Донецк: Препринт ДонФТИ АН УССР, 90–11, 1990. 13 с.
- 32. Компьютерный вариант составления паспортов управления кровлей и крепления лав пластов с углами падения свыше 35°C (Руководство). Донецк: Минуглепром Украины. 1998. 123 с.
- 33. Запобігання раптовим викидам вугілля і газу в разі виймання крутих вугільних пластів щитовими агрегатами. СОУ 101.00171144.002-2004: Стандарт Мінпаливенерго України: Прийнято та надано чинності 30.06.2004. Київ: Мінпаливенерго України. 2004. 14 с.