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The properties and excitation of solitary hump of electric potential of large amplitude, observed in experiment and
propagating with thermal velocity of plasma electrons near foil at laser pulse interaction with it, have been described.
This soliton has been observed at interaction of laser pulse of duration 1 nsec of power 10 W/cm? with foil of
thickness 26 pm. The excitation of soliton by nonstationary electrical field has been described for the first time. The
properties of soliton has been described in strongly nonlinear case. The dependences of width and velocity of soliton
on its amplitude at large values of amplitude have been derived. Both in experiments and numerical simulation it

was shown that the width of soliton increases with amplitude growth at large values of amplitude.

PACS: 29.17.4w; 41.75.Lx
1. INTRODUCTION

The interaction of an intense laser pulse with a foil
with the purpose of ion acceleration is an issue cur-
rently under investigation worldwide [1-2]. These ion
beams can be used for a range of applications, for
example in fast ignition and for neutral beam injec-
tion in nuclear fusion devices. Laser acceleration of
ions was observed from 1960s [3], but the interest
on this topic has increased dramatically in recent
years due to experimental access to relativistic in-
teraction regimes and increased efficiency in energy
coupling from the laser pulse to energetic electrons.
Earlier the formation of virtual cathode, electrical
double layer, semi-vortex and vortex near foil at
powerful laser pulse interaction with it has been in-
vestigated. Recently the soliton has been observed in
[4] at interaction of laser pulse of duration 1 nsec of
power 104 W/cm? with foil of thickness 26 pum. In
this paper the properties and excitation of this soli-
tary hump of electric potential of large amplitude,
observed in experiments [4] and propagating with
thermal velocity of plasma electrons near foil at laser
pulse interaction with it, have been described ana-
lytically. The excitation of soliton by nonstationary
electrical field has been described analytically for the
first time. The properties of soliton have been de-
scribed in strongly nonlinear case. It has been shown
that with amplitude growth the width of soliton in-
creases at large values of amplitude as in experiments
and numerical simulation.

2. KINETIC DESCRIPTION OF SMALL
AMPLITUDE SOLITON ON TIME, LESS
THAN TRAPPED ONE

We consider the solitary perturbation of electrical po-
tential. We describe its in 1D approximation. We
suppose that it moves with velocity Vs, close to ther-
mal velocity Vi of plasma electrons, along z. We de-
scribe the solitary perturbation of electrical potential
o of amplitude, ¢o. Because at first we look for the
solution of stationary soliton, moving with velocity
Vs, we use the dependence of the electron distribu-
tion function f. on coordinate z and time ¢ in kind
&= 2z—Vit.

We look for the solution of kinetic equation for
electron distribution function f. of kind:

no V2
Je=fo+df, fo= Wexp <—m> )
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Here fj is the unperturbed distribution function, § f
is the perturbation of plasma electron distribution
function, 0, is the time derivative, df(§) is the qau-
sistationary solution, 0 fr, §fyr are the linear and
nonlinear parts, ¢ f; is the part, determined by time
dependence of soliton at its excitation, § f is propor-
tional to Or¢:

5fp = ——p(V = Vi) "'0, fo,
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Integrating the latter expression on velocity and in-
troducing them in Poisson equation, one can derive:

92 = eR(vs) + ¢ K§ - UE) R(vs) — 1] ()
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R(vs):1+vs7r71/2/dy(y—vs)*lexp(—y2).

Here wp is the Langmuir frequency of plasma elec-
trons, T, is the temperature of plasma electrons.
From this equation we derive equation:

@ = orio)+ 5 (3 ome) - 3] - @

From the latter equation and natural condition,
On¢ |p=go= 0, we obtain expression for v, (similar
to [4]):

v = 0.924 (1 - %), V, ~ 1.3V, (1 - Z“;?) .
)

Vs equals approximately V. From Poisson equation
we also derive similar to [4] the expression for the
soliton width:
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3. SOLITON EXCITATION BY
QAUSISTATIONARY ELECTRICAL FIELD

We consider the soliton excitation by nonstationary
electrical field Ey(t). From Poisson equation one can
obtain the part 0 f,, determined by time dependence
of soliton at its excitation:
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Here e and m, are the electron charge and mass. In-
tegrating the latter expression on velocity, we derive
add to the perturbation of plasma electron density:
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Because from Poisson equation it follows:

9)
we derive growth rate yy of soliton amplitude q:

e

)Eo(t), By < 0.
(10)
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4. SOLITON PROPERTIES IN
ADIABATICAL APPROXIMATION

We consider dependences of soliton properties on am-
plitude for times, larger than electron interaction
time with it, i.e. larger than electron transit time
through soliton. In this approximation the gausista-
tionary distribution function of electrons f. on veloc-
ity V' has the following form:

9 1/2
fe:fOe [('Lﬂ_ ,ni(p) + Vs

,u > A(p)sign(z),

,u < A(p)sign(z),
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(11)

It means that trapped electrons are distributed near
separatrix. Here A(p) = (2epp/m.)"/? is the width of
resonance on plasma electron velocity, ng,- and T}, are
the trapped electron density and temperature, V4, is
the width of the trapped electron distribution func-
tion on velocity. On large time due to relaxation the
condition of distribution function continuity can be
correct on separatrix, where energy equals zero € = 0:

fOe ‘6:0: ftr ‘e:O . (12)

From here we derive the connection of parameters:
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Integrating f. on velocity, one can derive the expres-
sion for the electron density ne:

A
Ne = 2exp (;_@) /duftr(u)
tr
0
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Vs

Not taking into account trapped electrons in approx-
imation of small amplitude we obtain:

ne =~ no[l + @R(vs) + (p/2)?

2= 207 + (3 - 20D)(R(vs) — 1)]],  (14)
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exp(—
R(vs) =1+ 1/2/dt t_vs

This has been derived earher from kinetic equation
in “quick” approximation, i.e. on times, shorter than
trapped one. In the case of small amplitude the
adiabatic approximation without taking into account
trapped electrons and “quick” approximation lead to
the same result.

5. THE DEPENDENCE OF SOLITON
VELOCITY ON AMPLITUDE AT LARGE
ITS VALUES

Let us consider strongly nonlinear case, o > 1,
without taking into account trapped electrons. From
Poisson equation we derive:

Dyp)? 2
% = -+ / dt(t — vs)* exp(—t?)

— 00

[1+ﬁr/z—1] .

From condition 0,¢ |,=4,= 0 one can derive the dis-
persion relation, i.e. the dependence of soliton veloc-
ity vs on its amplitude g:

oo

(15)
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(t — vs)? ’

In the case of large amplitudes one can derive approx-
imately

(9007T)1/2

: (17)

~ / dt | t | exp[—(t+vs)?].

Then we obtain:

1/2
0.25 ( ) do
%o dvs

+ exp(—(t — 115)2)] +2

= —2u, dtt[exp(—(t'i‘vs)Q)
/

o0

/ At exp(—(t — vy)2)

—exp(—(t +v4)?)]. (18)
Using the approximate relation:
1/2 i
% ~ / dt |t | exp[—(t + vs)?], (19)

—00
we obtain the inverse derivative of soliton velocity on
its amplitude:

d
0.25 (/o) /2220 = 1/2

dv. (20)
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6. THE DEPENDENCE OF SOLITON
WIDTH ON AMPLITUDE AT LARGE ITS
VALUES

From Poisson equation we derive:

0 1/2 - e 1/2
X {14—7(25_@8)2] [1+ (t—vs)Q] .
(21)
M - (22)

1/2 7 ar |t ( 211T> el

We use approx1mate relation:

- 1/2

1/2 7
%: /dt\t|exp[—(t+vs)2]. (23)
Then we derive:
[One ‘sa:sao/ﬂz ) 1/2
e s (T e -2

From the latter we obtain approximately the width
An of soliton:

0 %0 Y2
An = ~ { } . (25)
e lo=po/2 (212 —1)
The soliton width increases with growth ¢g. This

has been observed at numerical simulation and in ex-
periment. Because the soliton width increases with
amplitude growth, it is interesting to consider the
role of trapped electrons.

7. THE ROLE OF TRAPPED ELECTRONS

In approximation of small amplitude the density of
trapped electrons equals

A
2 exp (;i) /duftr(u) ~
0
ep

(2 (e VP i)
“\72 ) 1z 7.1) 3|

Comparing this expression with density of un-
trapped electrons, one can see that the nonlinearity
of trapped electrons is stronger and has the same sign
that the nonlinearity, determined by untrapped elec-
trons. Thus if the density of trapped electrons is es-
sential, then they determine the properties of solitary
hump of electrical potential. The trapped electrons

(26)




are slowed down on the ends of the soliton (on its
periphery, where ¢ ~ 0). There their density

time. The properties of soliton have been described
in strongly nonlinear case. The dependences of width
and velocity of soliton on its amplitude at large values
of amplitude have been derived. It has been shown
that with amplitude growth the width of soliton in-

A
2N €XP (;—('0> / du fir(u)
tr
0

increases. Hence it is easy for trapped electrons to
provide necessary for soliton the spatial distribution
of electron density perturbation én. (humps of dn,
near the ends of the soliton (on its periphery)).

Also it is easy for trapped electrons to provide
necessary for soliton the dip dn. in its centre, if the 1.
trapped electrons are located near separatrix, i.e. at
Ty < 0. In other words the soliton is easier to form, if
it forms hole in electron phase space. If the trapped
electrons are located near separatrix, i.e. Ty < 0,
| Ty |>> Te, then the density of the trapped electrons
decreases quickly inside the soliton and it is essential
only at ¢ < p. Then we derive approximately:

A
Nire = 2Ny €XP (;_SO> /duftr(u) ~ 3.
0

creases at large values of amplitude both in experi-
ments and numerical simulation.
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The excitation of soliton by nonstationary electri-
cal field has been described analytically for the first

BO3BY2K/JEHUE I CBOMICTBA COJINTOHA BOJIBIIION AMILJINTYAbI BBJIN3U
®OJIbI' IIPU B3AUMOAENCTBUU C HEN JIASEPHOI'O UMIIYJIBCA

B.A. Macnos, U.H. Onuwenxo, U.1I1. dposeas, A.M. Ezopos

Omnucanbl cBOHCTBA 1 BO3OY K AeHNe HADII0IJAeMOT0 B IKCIIEPUMEHTAX COTUTOHHOTO TOpPOa 3JIEKTPUIECKOTO T10-
TEHINAJIa OOJIBITION AMIIJINTY/IbI, JIBUTAIONIET0Cs C TETJIOBOM CKOPOCTHIO 3JIEKTPOHOB I1J1a3Mbl, BOJIN3H (HOTBIU
[IPU B3aMMOJIEHCTBUN C HEH JIA3ePHOIO UMIIYJIbCA. DTOT COJUTOH HADJIIOJAIICSA IPU B3aUMOAEHCTBHH € (DOJIb-
roft TOMMUHON 26 MEKPOH, JIa3ePHOrO UMITY/ThCa JATATeTbHOCTRI0 1 He n MomuocThio 1014 Br/cvm?. Buepsbie
ONUCAHO BO30OYKJIEHUE COJIMTOHA HECTAIIMOHAPHBIM 3JIeKTpudecKuM moseM. QMucaHbl CBOMCTBA COJUTOHA B
CHUJIBHO HeJTuHEeHHOM ciaydae. [lomydena 3aBUCUMOCTD IMTUPUHBI U CKOPOCTU COTUTOHA OT €r0 aMTIJTUTYAbI TP
0oJIbIUX ee 3HadYeHuAX. [[0Ka3aHO, YTO ¢ POCTOM AMILIATYIBI MMUPUHA COJUTOHA PACTET MPU OOJIBINUX 3HA~
YeHUAX aMIUIATYIbI, KaK B 9KCIEPUMEHTAX W IUCJIEHHOM MOJETNDPOBAHUM.

3BYIXKEHHS I BJIACTUBOCTI COJIITOHA 3HAYHOI AMIIJIITYAN IIOBJIN3Y
®OJIbTI'Y TIPU B3AEMO/II 3 HEIO JIASBEPHOTO IMITYJIBCY

B.I. Macaos, I.M. Onuwenxo, 1.1I1. SIposa, O.M. €zopos

Omnucani BracTuBOCTI 1 30y/I2KEHHS COJITOHHOTO TOP0Oa, €JIEKTPUYHOTO TIOTEHIAIy BEJIMKOI aMILIiTyau, KU
CIIOCTEPIraBCs B €KCIIEPUMEHTAX 1 PYXaBCsA 3 TEIJIOBOIO MIBUIKICTIO €JIEKTPOHIB IIa3Mu, mobgu3y (DOJIbru
IIpH B3aEMOII 3 Helo Ja3epHoro iMmmysabcy. e comiTon cocrepiraBest mpu B3a€MO/Iil 3 HOTBIOI0 TOBITUHOIO
26 MiKpOH Ja3epHOro iMmymbey TpusagicTio 1 He i noryxnicrio 1014 Br/cm?. Buepmre onucano 30y1xKenHs
COJIITOHA HECTAIIOHAPHUM eJieKTpuIHuM mosaeMm. Onucani BIaCTUBOCTI COMTOHA B JyzKe HeJiHITHOMY BUIa/I-
ky. OTprMaHa 3aJI€KHICTh IMUPWHY TA MIBAIKOCTI COITOHA Bil HOr0 aMILIITY AW MPU BEJIUKUX 11 3HAYECHHSIX.
ITokazano, 110 3i 30LIbINEHHsAM aAMILIITY M MUPWHA, COJITOHA POCTE MU BEJIUKUX AMILIITYIAX, sIK B €KCITe-
PUMEHTaX Ta YHUCIOBOMY MO/IETIOBAHHI.
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