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We propose a two-dimensional spin-1/2 Ising-Heisenberg model with quartic interaction. In this sense the phase

diagram for the model at zero temperature is studied, obtaining four different configurations for the unitary cell. It

should be observed that using the rotation and spin inversion symmetry we have only three spin configurations that

are relevant. In addition, the model under consideration will be straightforwardly mapped to the exactly solved eight-

vertex model and the conditions for obtaining an exact solution will be investigated. The analysis was performed for

two different conditions, namely, where the free fermion condition (FFC) and the symmetrical eight-vertex condition

(SEVC) are satisfied.

PACS: 75.10.Jm

1. INTRODUCTION

It is well known that quartic interactions affect mag-
netic properties of several copper compounds and all
efforts for obtaining exact results of models contain-
ing quartic interaction in the Hamiltonian can be use-
ful to shed light on some important aspects of these
magnetic properties [1]. Several results for 2d Ising
Heisenberg model connected with its exact solutions
were obtained in the works [2, 3]. Actually, the main
idea of similar transformation is to establish an equiv-
alent form to write down the original partition func-
tion by means of a new set of interaction parameters.
A detailed study of decoration-iteration transforma-
tion and exactly solved models can be found in [4,5].
On the other hand, as was showed by Kun-Fa [6] it
is possible to obtain a region where the model can be
solved approximately. This was considered by Fan
and Wu [7, 8], where the eight-vertex model was ex-
actly solved as well as with good approximation.

With this motivation we study a two dimensional
Ising-Heisenberg model where the quartic interaction
is assigned to the outer spin-1/2 sites. The model is
composed of a two-dimensional lattice of edge-sharing
unitary cells, where each one is composed of two tri-
angular prism converging in a basal plane with four
Ising spins-1/2 (empty circles), the apical positions
are also occupied by four Heisenberg spin-1/2 (filled
circles). Interaction of the base plane containing the
quartic Ising interaction has the parameter J4, and
the other two site interactions have parameter J .
Then, we construct a phase diagram for the model
at zero temperature. In order to solve the model,
we perform the summation over the inner sites on
each unitary cell of the whole lattice. The best way

to achieve it, is by fixing the set of spin values of
the outer sites. We obtain a complete set of sixteen
eigenvalues for the unitary cell, where some of which
are degenerated. It should be observed that using the
rotation and spin inversion symmetry only three spin
configurations are relevant.

The work is organized as follows. In Section 2 we
present explicitly the two-dimensional Hamiltonian
of XXZ-Ising model with quartic interaction. Section
3 is devoted to the study of the phase diagrams and
the different ground states. In Section 4 we perform
a straightforward mapping of our model to the zero
field eight-vertex model, so a detailed analysis of the
exact solution is realized. Finally, in Section 5 some
concluding remarks are given.

2. THE MODEL

We give the Hamiltonian for the unitary cell Hu

of the Ising-Heisenberg spin-1/2 model. This unitary
cell is represented in Fig. 1, where the dashed and
solid lines represent the Ising and Heisenberg inter-
actions respectively. The total Hamiltonian can be
written as H =

∑
u Hu, where

Hu =
∑

<i,j>

(
ΔJ

(
σx

i σx
j + σy

i σy
j

)
+ Jσz

i σz
j

)

+J4

∑
(i,j)

sisjσiσj , (1)

the first sum runs over the nearest neighbor site while
the second one runs over the next-nearest neighbor
site. In the above relation we assume that Jx = Jy =
ΔJ and Jz = J , where Δ measure a relative strength
of the exchange anisotropy in the XXZ interaction.
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Fig. 1. In (a) the unitary cell of Ising-
Heisenberg spin-1/2 model with quartic in-
teraction is given. The dashed lines indicate
interactions of the Ising type while the solid
lines are connected with the Heisenberg inter-
action. In (b) we depicted the mapping of the
unitary cell to the effective two dimensional
Ising square cell

3. PHASE DIAGRAMS

In this section we construct the phase diagram
for XXZ-Ising model with quartic interaction at zero
temperature. At the beginning we perform the sum-
mation of Heisenberg σi sites on each unitary cell.
The best way to achieve it, is by fixing the set of Ising
spin values {s1, s2, s3, s4}, in this sense it is not dif-
ficult to obtain a complete set of sixteen eigenvalues
for the unitary cell (depicted in fig.1b). Using the ro-
tation and spin inversion symmetry, we conclude that
only three spin configurations are relevant, therefore
we analyze the spin configurations (i) {+, +, +, +},
(ii) {+, +,−,−}, and (iii) {+, +, +,−}.

3.1. Configuration (+, +, +, +)

For this case it is not tricky to obtain all sixteen
energy eigenvalues. These eigenvalues are displayed
in the first column of the table 1, while the second
column indicates the degeneracy order of the corre-
sponding eigenvalues. For the region with J > 0
and any value of the parameters J4 and Δ, the en-
ergy εFI1 = −2J−√

8Δ2J2 + (J − J4)2, is the lowest
eigenvalue with the corresponding eigenvector

|FI1〉 = (1 + R)
∣∣∣ +−++

++−+

〉
+ a(−)

3∑
r=0

Rr
∣∣∣ +−++

+−++

〉
,

(2)

whith a(−) given by

a(∓) =
1

4ΔJ

(
J − J4 −

√
8Δ2J2 + (J ∓ J4)2

)
, (3)

in (2) with the largest (+) signal (inner signs) we
represent sites with spin σ. The magnetization of the
unitary cell is neither null, nor saturated and corre-
sponds to the ferrimagnetic state with magnetization
1/4, we represent this state as FI1. By R we rep-
resent the rotation operator acting only on Heisen-
berg interaction particles with spin σ, each rotation
is performed in π

2 , around the axis perpendicular to
the plane of lattice.

On the other hand in the region with J < 0, we ob-
serve a ground state dependence of the parameter Δ,
in this case for large values of Δ � 1 only the FI1

state (2) is present, while for small values of Δ < 1 we
have additionally two other states, a ferromagnetic
(FM1) and antiferromagnetic (AF1) states which we
called type I, these states are degenerated and have
the same eigenvalue, εFM1 = εAF1 = 4J + 2J4. The
corresponding eigenvectors are given by

|FM1〉 =
∣∣∣ ++++

++++

〉
, (4)

|AF1〉 =
∣∣∣ +−−+

+−−+

〉
, (5)

these two states have magnetization equals to 1/2 for
the FM1 and 0 for the AF1 state. In the Fig. 2 we
depict the dependence of the different ground states
on the parameter Δ.

Table 1. The energy levels for configuration
{+, +, +, +}

Energy {+, +, +, +} Degeneracy

−2J ± √
8Δ2J2 + (J − J4)2 1
±4ΔJ 2

4J + 2J4 2
−4J + 2J4 1

−2J4 3
0 4
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0
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Fig. 2. In this figure we illustrate the dependence of
the ground state on the parameter Δ. It is clear that
for large values of relative strength of the exchange
anisotropy (Δ � 1), only the ferrimagnetic state of
type I is present

3.2. Configuration (+, +,−,−)

As before we found sixteen eigenvalues listed in
Table 2. Firstly, we have that for positive values of
J > 0 and any value of the parameters J4 and Δ,
the antiferromagnetic state of type II (AF2) with en-
ergy, εAF2 = −2J − √

8Δ2J2 + (J + J4)2, becomes
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the ground state energy

|AF2〉 = (1+R)
∣∣∣ −−+−

++−+

〉
+a(+)

3∑
r=0

Rr
∣∣∣ −−−−

++++

〉
, (6)

with a(+) given by eq.(3). In the other region for
negative values of J < 0 and large values of the pa-
rameter Δ � 1 only the AF2 given by the eq.(6) is
present, while for small values of the parameter Δ,
we have a new ferrimagnetic state of type II (FI2).
This state has the energy value, εFI2 = 4J − 2J4 ,

|FI2〉 =
∣∣∣ −++−

++++

〉
, (7)

this is a two degenerated state with magnetization
equal to 1/4. The other eigenvector state, with the
same energy, is equivalent to (7) and it is obtained by
applying the spin inversion operator to whole unitary
cell, magnetization of this state is equal to −1/4. All
ground states are represented in Fig. 3.

Table 2. The energy levels for configuration
{+, +,−,−}

Energy {+, +,−,−} Degeneracy

−2J ± √
8Δ2J2 + (J + J4)2 1
±4ΔJ 2

4J − 2J4 2
−4J − 2J4 1

2J4 3
0 4
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Fig. 3. The ground states are depicted as a function
of the parameter Δ. For large values of Δ � 1 only
the ground state AF2 is maintained and for small val-
ues of Δ, two degerated state FI2 with magnetization
equal to 1/4 appears

3.3. Configuration (+, +, +,−)

For the last configuration and after some manipula-
tions we found all sixteen eigenvalues listed in Ta-
ble 3. In this case we have different situations de-
pending on values of the anisotropy parameter Δ.
For example, for value of the parameter Δ = 1, we
see that the ground state energies are given by an an-
tiferromagnetic state (AF (+)), with energy εAF (+) =

−2J(1+
√

1 + 8Δ2), a ferrimagnetic state of type III
(FI3) and a antiferromagnetic state of type III (AF3),
these states are two-degenerated and have energies
εFI3 = εAF3 = −2

√
J2

4 + 4Δ2J2. This situation is
illustrated in Fig 4b. The corresponding eigenvectors
in this case are given by

|AF (±)〉 = (1 + R)
∣∣∣ −−++

++−+

〉
+ c(±)

3∑
r=0

Rr
∣∣∣ −−−+

++++

〉
,

(8)

|FI3〉 = (1 + cR)(1 + R2)
∣∣∣ −−++

++++

〉
, (9)

|AF3〉 = (1 + cR)(1 + R2)
∣∣∣ −+−+

+−−+

〉
, (10)

where c(±) and c are equal to

c(±) = − 1
4Δ

(1 ±
√

1 + 8Δ2), (11)

c = − 1
2ΔJ

(J4 +
√

J2
4 + 4Δ2J2). (12)

For small values of the anisotropy parameter, as
for example, Δ = 0.5, a new ferrimagnetic state
(FI±) appears as depicted in Fig. 4a. The energy of
this state is two degenerated and equal to εFI(±) = 4J
with the corresponding eigenvector

|FI(±)〉 =
∣∣∣ −±±+

+±±+

〉
. (13)
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Fig. 4. The ground state energies for different val-
ues of the parameter Δ. In (b) for Δ = 1 we have
three ground states AF (+), FI3 and AF3. For values
of the parameter Δ < 1 or Δ > 1, three new ground
states appear, the FI(±) and the AF (−) respectively.
This is illustrated in figure (a) and (c)

Table 3. The energy levels for configuration
{+, +, +,−}

Energy {+, +, +,−} Degeneracy

±2
√

J2
4 + 4Δ2J2 2

−2J(1 ±√
1 + 8Δ2) 1

±2J4 2
−4J 1
4J 2
0 3
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For values of Δ > 1, as for example Δ = 2,
another antiferromagnetic state AF (−) appears, this
ground state has the eigenvalue, εAF (−) = −2J(1 +√

1 − 8Δ2), with the eigenvector given by the relation
(8). This is depicted in fig.4c

4. EQUIVALENCE TO THE ZERO-FIELD
EIGHT-VERTEX MODEL

Now we proceed to study the conditions necessary to
obtain an exact solution. The best way to achieve
it, is by performing a straightforward mapping to the
exactly solved eight-vertex model. This procedure
was already discussed in several works [2–4] where
a decoration transformation was applied to different
Ising-Heisenberg models. The main goal of similar
transformation is to establish an equivalent form to
write down the original partition function by means
of a new interaction parameters set.
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Fig.5. We Illustrate the eight different spin arrange-
ments corresponding to different Boltzmann weights.
Inversion of all spins coresponds to the same vertex.

We begin writing the partition function as,

Z =
∑
{s}

N∏
u=1

w ({s}) , (14)

where N is the number of unitary square cells in the
whole lattice and w({s}) are the Boltzmann weights
assigned to the u-th unitary cell as a function of the
spin s, they are given by

w({s}) ≡ Tr{σ}
(
e−βHu

)
, (15)

here Hu is the Hamiltonian of the unitary cell and is
given by the relation (1). By β = 1/kT , we denote
the inverse of temperature, k is the Boltzmann con-
stant and the Tr{σ} indicates the trace on the spin-
1/2 sites inside the unitary square cell. As showed in
the works [2,4] it can be established a complete equiv-
alence between the partition function of the original

Ising-Heisenberg model and the partition function of
the eight-vertex Ising model on square lattice. This
transformation is illustrated in fig.1b. In this way we
introduce the effective Boltzmann weight w̃

w̃ ({s}) = fe−β �Hu, (16)

here f is a new constant and H̃u is the new effec-
tive Hamiltonian. The eight different spin arrange-
ments of these Boltzmann weights are schematically
depicted in the fig.5. Next, we give the effective
Hamiltonian H̃u of the unitary cell

H̃u = K
∑

(k,k′)

sksk′ + L
∑

<k,k′>

sksk′ + Ms1s2s3s4,

H̃ =
∑

all square

H̃u, (17)

here K, L and M represent a new set of interaction
parameters and H̃ is the total effective Hamiltonian.
The first sum in (17) with k, k′ = 1..4, runs over
the nearest neighbor spin-1/2 Ising site of the effec-
tive unitary cell, while the second one runs over the
next-nearest neighbor spin-1/2 Ising site. The main
idea to establishing a complete equivalence between
these both models, is the fact that the Boltzmann
weights contained in the expression (15) and the ef-
fective Boltzmann weight given by (16) are equiva-
lent. We write the effective partition function as

Z̃ = fNZ0, (18)

with N being the number of square cells in the whole
lattice. In the above relation Z0 is the partition func-
tion for spin-1/2 of the eight-vertex model. After
some manipulations we find the following values for
the interaction parameters

f =
(
w1w3w

2
5

)1/4
, (19)

βL = ln
(w3

w1

)1/4

, (20)

βM = ln
( w2

5

w1w3

)1/4

, (21)

K = 0, (22)

the Boltzman weigths defined by (15) take the form

w1 = 2e2βJch
(
2β

√
8Δ2J2 + (J − J4)2

)
+ e−2βJ4

(
e4βJ + 2e−4βJ

)
+ 3e2βJ4 + 4ch(4βΔJ) + 4, (23)

w3 = 2e2βJch
(
2β

√
8Δ2J2 + (J + J4)2

)
+ e2βJ4

(
e4βJ + 2e−4βJ

)
+ 3e−2βJ4 + 4ch(4βΔJ) + 4, (24)

w5 = 4ch
(
2β

√
J2

4 + 4Δ2J2
)

+ 2e2βJch
(
2βJ

√
1 + 8Δ2

)
+ 4ch(2βJ4) + e4βJ + 2e−4βJ + 3, (25)

the other Boltzmann weights are obtained taking into
account the following identities

w1 = w2, w3 = w4, w5 = w6 = w7 = w8. (26)

It directly follows from the relations (23)-(25) that

the greatest Boltzmann weight is given by w1 or w3.
It is also possible to observe the symmetry of the
Boltzmann weights w1 and w3 in relation to the pa-
rameter J4, namely, w1(±J4) = w3(∓J4), further,
because w5 is an even function in J4 we can assume
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in the next lines a possitive value of J4 > 0 without
lossing generality.

4.1. Free Fermion Condition (FFC)

An extensive study of the exactly solvable model
is given in [5]. On the other hand, recently, two di-
mensional Ising-Heisenberg model with quartic inter-
action was solved mapping into the zero field eight-
vertex model [1]. In our case, the model defined by
the Hamiltonian (1) is mapped into the eight-vertex
model, verifying the conditions where this mapping is
successfully done. In the following lines we discuss in
details the conditions for obtaining an exact solvable
model.
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Fig.6. In (a) and (b) we depict for Δ = 0.5 and
Δ = 5, respectively, the region where the FFC is sat-
isfied approximately, the shadow region satisfies the
condition Θ/w2

max � 0.001 whereas the white region
is for the case Θ/w2

max � 0.001.

We start discussing which conditions are neces-
sary to obtain an exactly solved model. The first one
is the FFC

Θ = w1w2 + w3w4 − w5w6 − w7w8, (27)

this condition implies Θ = 0. Unfortunately, when
imposing the FFC we cannot find an exact solution.
However, as it was pointed out by Fun and Tang, it
is possible to obtain a region where the model can
be solved approximately, this happens when the con-
dition Θ/w2

max � 1 takes place, this procedure is
detailed in the works [6, 7]. Actually, for any values
of Δ in the range Δ ≤ 1, we have that for J4 < 0 the
maximum values of the Boltzmann weight is w1 and
for J4 > 0 the maximum value becomes w3. To illus-
trate this fact we fixed the value Δ = 0.5 and depict
the region where Θ/w2

max � 0.001, this is showed by
the shadow region in the fig.6a. The solution is more
exactly if the parameters J , J4 converge to the point
(0, 0) and becomes exact for the trivial case J = 0,
J4 = 0. For large values of Δ, in the range Δ > 1,
the maximum value, as depicted in the fig.6b, are re-
arranged. For the sake of comparison we point out
that only few changes of the shadown region are ob-
served.

4.2. Symmetric Eight-Vertex Condition
(SEVC)

The second branch where the model can be solved
exactly is the SEVC given by

w1 = w2, w3 = w4, w5 = w6 w7 = w8, (28)

it is not difficult to see from the relations (26) that
this condition is fully satisfied for any values of the
interaction parameters J, J4 and any values of the
anysotropy parameter Δ.

5. CONCLUSIONS

In this work we studied a two dimensional XXZ-Ising
model with quartic interaction. We discussed the
ground state energy and plotted the phase diagrams
at zero temperature as a function of the strenght pa-
rameter Δ. We observed that only three spin configu-
rations are relevant, in this way we analyzed the con-
figurations (+, +, +, +),(+, +,−,−) and (+, +, +,−)
obtaining different ground states. Then, we per-
formed a straightforward mapping to the eigth-vertex
model and explored the conditions under which the
model is exactly solved. The Boltzmann weights were
calculated and the FFC and the SEVC were dis-
cussed. First, we verified that the FFC is not sat-
isfied exactly, however it was possible to give the re-
gion where this condition is satisfied approximately.
Secondly, we found that the SEVC is satisfied in un-
restricted manner.
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