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The equilibrium properties of a system of interacting bosons are studied from a microscopic point of view. We

calculate the superfluid density in the Bogolyubov model of imperfect Bose gas. The model superstable Hamiltonian

is considered. We examine the case of some pair potential and find the estimate for temperature and density in the

λ-point.
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1. INTRODUCTION

It took 30 years after the liquefaction of 4He in 1908
to make the discovery that liquid helium was not just
a “cold” liquid. Below 2.18K, it is a “quantum” liq-
uid which exhibits spectacular macroscopic quantum
behavior that can be seen with our eyes. The first ev-
idence for superfluidity was, in fact, a seminal experi-
ment in 1935 by Misener. He found that the viscosity
decreased sharply as one went just below 2.18K, al-
though it was still finite. This was the first evidence
that He II was a new kind of liquid (this work was
published under the name of E.F. Barton, the head
of the Toronto lab, causing some later confusion [1]).

The superfluid behavior is commonly associated
with the phenomenon of a Bose-Einstein condensa-
tion. However, the detailed theoretical investigation
of superfluidity and condensation in liquid helium is
a great challenge, as it is a strongly interacting quan-
tum system and cannot be effectively described with
a mean-field or perturbative approaches.

Experimental achievement of Bose-Einstein con-
densation in dilute trapped atomic gases gives a
unique possibility to study their superfluid properties
under condition of weak interactions. It has opened
an opportunity for revisiting the concept of superflu-
idity. In this context the issue of the atomic Bose-
Einstein condensation under rotation has attracted
great interest. On the other hand, a little is known
about superfluidity in a translational motion of the
atomic condensate. There are still no experiments
that would correspond to the demonstration of fric-
tionless non-rotary flow, which is the most intuitive
manifestation of this phenomenon.

In Section 2 we analyze the superfluid properties
of Bogolyubov quasiparticles. We derive analytically
superfluid density of the system.

In Section 3 we present some generalization of
a standard Bogolyubov model. This model is ex-

actly solvable in thermodynamic limit. The estimates
for temperature and total density in the λ-point are
found.

2. BOGOLYUBOV MODEL.
SUPERFLUIDITY

Let us consider a system of N spinless identical non-
relativistic bosons of mass m enclosed in a centered
cubic box Λ ⊂ R

3 of volume V = |Λ| = L3 with
periodic boundary conditions for the wave functions.
The Hamiltonian of the system can be written in the
second quantized form as:

ĤΛ(μ) ≡ ĤΛ − μN̂Λ =
∑

k∈Λ∗(εk − μ)â†kâk

+
1

2V

∑
p,q,k∈Λ∗

ν(k)â†pâ
†
qâp+kâq−k. (1)

Here â#
p = {â†p or âp} are the usual boson creation

(annihilation) operators for the one-particle state
ψp(x) = V −1/2 exp(ipx), p ∈ Λ∗, x ∈ Λ, acting on
the Fock space FΛ = ⊕∞

n=0H(n)
B , where H(n)

B ≡
[L2(Λn)]symm is the symmetrized n-particle Hilbert
space appropriate for bosons, and H(0)

B = C. The
sums in (1) run over the dual set:

Λ∗ = {p ∈ R
3 : pα =

2π
L
nα,

nα = 0,±1,±2, . . . , α = 1, 2, 3},

εp = |p|2/(2m) is the one-particle energy spectrum of
free bosons in the modes p ∈ Λ∗ (we propose � = 1),
N̂Λ =

∑
k∈Λ∗ â

†
kâk is the total particle-number oper-

ator, μ is the chemical potential, ν(k) is the Fourier
transform of the interaction pair potential Φ(x). We
suppose that Φ(x) = Φ(|x|) ∈ L1(R3) and ν(k) is
a real function with a compact support such that
0 ≤ ν(k) = ν(−k) ≤ ν(0) for all k ∈ R3. Under
these conditions the Hamiltonian (1) is superstable.
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So long as the rigorous analysis of the Hamil-
tonian (1) is very knotty problem, Bogolyubov in-
troduced the model Hamiltonian of the superfluidity
theory [2, 3]. He proposed to disregard the terms of
the third and fourth order in operators â#

p , p �= 0 in
the Hamiltonian (1):

ĤB
Λ (μ) =

∑
k∈Λ∗

(εk − μ)â†kâk +
1
V
â†0â0

∑
k �=0

ν(k)â†kâk

+
1

2V

∑
k �=0

ν(k)(â†k â
†
−kâ0â0 + â†0â

†
0â−kâk)

+
ν(0)
V

â†0â0

∑
k �=0

â†kâk +
ν(0)
2V

â†0â
†
0â0â0. (2)

Then Bogolyubov takes advantage of the macro-
scopic occupation of the zero momentum one-particle
state to replace the corresponding creation and anni-
hilation operators â#

0 by c-numbers:

â†0√
V

→ c̄,
â0√
V

→ c, (3)

where c ∈ C and the bar means complex conjugation.
The validity of substituting a c-number for the

k = 0 mode operators a#
0 was established rigorously

for the Bogolyubov Hamiltonian (2) in papers [4, 5].
So one can prove that the model Hamiltonian ĤB

Λ (μ)
is thermodynamically equivalent to the approximate
Hamiltonian:

ĤB
Λ (μ, c) =

∑
k �=0

[εk − μ+ |c|2(ν(0) + ν(k))]â†k âk

+
1
2

∑
k �=0

ν(k)(c2â†kâ
†
−k + c̄2âkâ−k)

+
1
2
ν(0)|c|4V − μ|c|2V. (4)

The self-consistency parameter c in the method is
determined by the condition that the approximate
pressure p[ĤB

Λ (μ, c)] be maximal. In the same time,
the stability condition μ ≤ ν(0)|c|2 must be fulfilled.
A necessary condition for p[ĤB

Λ (μ, c)] to be maxi-
mum (self-consistency equation) in the case of the
Bogolyubov model is〈

∂ĤB
Λ (μ, c)
∂c

〉
ĤB

Λ (μ,c)

= 0. (5)

This equation always has the trivial solution c = 0
(no Bose condensation). By explicit calculations we
get the following equation to obtain a nontrivial so-
lution:

μ− xν(0) =
1

2V

∑
k �=0

[
−ν(k) hk

Ek
coth

βEk

2

+(ν(0) + ν(k))
(
fk

Ek
coth

βEk

2
− 1

)]
, (6)

where

uk =
√

1
2

(
fk

Ek
+ 1

)
, vk = −

√
1
2

(
fk

Ek
− 1

)
,

fk = εk − μ+ x(ν(0) + ν(k)),
hk = xν(k), Ek =

√
f2

k − h2
k

and we denote x ≡ |c|2.
We shall use the function

ν(k) =
{
ν(0) for |k| ≤ k0,
0 for |k| > k0

(7)

as the Fourier transform of the pair potential. Here
ν(0) = 4πr0/m, k0r0 = 1, r0 = 2.56 Å, m = mHe4 .

In this case it was shown [4–6], that if the poten-
tial ν(k) in the Bogolyubov model of superfluidity (2)
satisfies the condition

ν(0) ≥ 1
2V

∑
k �=0

ν2(k)
εk

, (8)

then there exists the domain of stability on the phase
diagram {0 < μ ≤ μ∗, 0 ≤ θ ≤ θ0(μ)}, where the non-
trivial solution of the self-consistency equation takes
place. In this domain there is the non-zero Bose con-
densate. At the boundary θ = θ0(μ) of this domain
the Bose condensate density equals ρ0 = μ/ν(0).
In this case the quasi-particles spectrum of the Bo-
golyubov Hamiltonian (2)

Ek =
√
εk(εk + 2ρ0ν(k))

has a gapless type and the famous Landau’s criterion
of superfluidity

min
k

Ek

|k| > 0

holds.
We shall now study the fluid motion of our sys-

tem at a uniform, constant velocity. This will provide
a means for defining normal and superfluid compo-
nents. The normal density may be defined by the
effective mass for drift, as was originally asserted by
Landau [7]. The mass density of the normal fluid is
found from

ρn = − 1
3V

∑
k

k2 ∂nk

∂εk
=

β

3V

∑
k

k2nk(1 + nk). (9)

The total mass density ρ = mn = ρn + ρs, where ρs

is the density of superfluid. Of course, ρs is not to
be interpreted as the density of the particles in the
zero-momentum state ρ0 = mn0.

On evaluation of equation (9), we find (ρ−ρs)/ρ ≈
0.1, (ρ − ρ0)/ρ ≈ 0.1, ρs > ρ0 for μ = μ∗ and
θ = θ0(μ∗). For the model pair potential (7) one
can find ρ ≈ 0.02 g/cm3 and θ0 ≈ 0.18 K. (For real
He4 θ0 ≈ 2.18 K and ρ ≈ 0.13 g/cm3.The Bogolyubov
HamiltonianHBog does not take into account interac-
tions between the excitations. So the physical results
based on the Hamiltonian HBog are far from “real
superfluidity”.

3. BOGOLYUBOV MODEL. λ-POINT

We attempt to take into account the terms of fourth
order in operators a#

k , k �= 0 in the full Hamiltonian
(1). Consider the model superstable Hamiltonian

Ĥadv
Λ (μ) = ĤB

Λ (μ) +
ν(0)
2V

ˆ̃
N

2

, (10)
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where ˆ̃
N =

∑
k �=0 â

†
kâk. It is possible to prove that

this Hamiltonian is equivalent to the approximate
Hamiltonian

Ĥadv
Λ (μ, x) = ĤB

Λ (μ) + ν(0)x ˆ̃
N +

ν(0)
2
x2V, (11)

where the self-consistency equations are

x =
1

2V

∑
k �=0

(
fk

Ek
coth

βEk

2
− 1

)
, (12)

μ− ν(0)(n0 + x)

=
1

2V

∑
k �=0

ν(k)
(
fk − hk

Ek
coth

βEk

2
− 1

)
. (13)

Here
fk = εk − μ+ ν(0)(n0 + x) + ν(k)n0, (14)

hk = ν(k)n0, E
2
k = f2

k − h2
k. (15)

When n0 = 0 the equation (12) reads

x =
1
V

∑
k �=0

1
exp [β(εk − μ+ ν(0)x)] − 1

. (16)

This equation has the unique positive solution for
μ ≤ μc = ν(0)ρ(0)

c , where

ρ(0)
c =

1
V

∑
k �=0

1
exp (βεk) − 1

. (17)

Then, the condensate density n0 �= 0 for μ > μc. So,
for n0 �= 0 we must solve the pair of self-consistency
equations (12)-(13). For μ = ν(0)n the Landau’s cri-
terion of superfluidity holds. In this case the equation
(9) and the condition ρ = ρn give an estimate for the
λ-point θs ≈ 1.9 K for ρ ≈ 0.08 g/cm3. This estimate
is in sufficiently good-enough agreement with exper-
imental data. As is easy to see this method does not
describe a case of small density. Yet it permits to
investigate the neighborhood of the λ-point.

4. CONCLUSIONS
We have investigated the superfluid properties of a
Bogolyubov’s weakly interacting Bose gas at thermal

equilibrium. Using the conventional definition of the
normal fraction, we find that the gas has a signifi-
cant superfluid fraction only in the Bose condensed
regime. However, it is impossible to describe the λ-
point region by a standard Bogolyubov model. To
investigate more carefully the λ-point regime where
the superfluid density tends to zero, we examined the
advanced Bogolyubov model. In this model we take
into account the terms of fourth order in operators
â#

k , k �= 0 in the full Hamiltonian of a non-ideal Bose-
gas. Quantitatively, we have found that the super-
fluid phase transition temperature is in good agree-
ment with experimental data.
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