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The problem of parameters, which are necessary for nonequilibrium electromagnetic field description, is investigated

on the basis of the Bogolyubov reduced description method establishing the necessity of binary correlations in the

minimal set of parameters taken into account in evolution equations. The corresponding theory can be built in terms

of one-particle density matrices, Wigner distribution functions, simultaneous correlation functions of field operators,

and generating functionals. The obtained results can be analyzed with the help of approaches elaborated in quantum

optics. Various methods in theoretical and experimental research into field correlations are compared.

PACS: 05.20.Dd, 51.10.+y

1. INTRODUCTION

A statistical operator gives the most general de-
scription of field states, but from the point of view of
experiments only reduced description of electromag-
netic fields is possible. In all the cases it is necessary
to choose physical quantities providing an adequate
picture of nonequilibrium processes after transfer to
averages. In our previous investigations several ap-
proaches to the construction of kinetic equations have
been outlined. The used methods can be connected
due to relatively simple relations expressing their key
quantities through one another. At the same time
quantum optics introduces non-simultaneous correla-
tion functions and requires advanced methods.

2. REDUCED DESCRIPTION AND
NECESSARY SET OF FIELD

PARAMETERS

The Bogolyubov reduced description method (see, for
example, [1]) can be a basis for the general consid-
eration of the problem. Its starting point in this
approach is the quantum Liouville equation for the
statistical operator ρ(t) of a system including elec-
tromagnetic field (subsystem f ) and a medium (sub-
system m)

∂tρ(t) = − i

h̄
[Ĥ, ρ(t)], (Ĥ = Ĥf + Ĥm + Ĥmf). (1)

The method is based on the functional hypothesis de-
scribing a structure of the operator ρ(t) at long times

ρ(t) −−−→
t�τ0

ρ(ξ(t, ρ0), η(t, ρ0)) (ρ0 ≡ ρ(t = 0)) (2)

where reduced description parameters of field
ξμ(t, ρ0) and matter ηa(t, ρ0) are used. The set

of parameters ξμ(t, ρ0) is determined by the pos-
sibilities and traditions of experiments as well as
by theoretical considerations. The development of
the problem investigations has resulted in finding
the main approximation for the statistical operator
ρ(ξ, η), so called a quasi-equilibrium statistical oper-
ator ρq(Z(ξ), X(η))(though it describes states which
are far from the equilibrium) defined by the relations

ρq(Z, X) = ρf(Z)ρm(X);

ρf(Z) = exp{Φ(Z) −
∑

μ

Zμξ̂μ},

Spfρf(Z) = 1, Spfρf(Z(ξ))ξ̂μ = ξμ;

ρm(X) = exp{Ω(X) −
∑

a

Xaη̂a},

Spmρm(X) = 1, Spmρm(X(η))η̂a = ηa. (3)

Practically all the electrodynamics of continuous me-
dia operates with average values of electromagnetic
field ξαn(x, t): ξ1n(x, t) = En(x, t), ξ2n(x, t) =
Bn(x, t). In this case operators ξ̂μ in (3) are ξ̂αn(x):
ξ̂1n(x) = Ên(x), ξ̂2n(x) = B̂n(x) which in the
Coulomb gauge are given by expressions

Ên(x) = i
∑
αk

(2πh̄ωk)1/2

V 1/2
eαkn(cαk − c+

α,−k)eikx,

B̂n(x) = εnlm×

×i
∑
αk

(2πh̄ωk)1/2

V 1/2
k̃leαkm(cαk + c+

α,−k)eikx (4)

(we use standard notations of quantum electrody-
namics; k̃l ≡ kl/k). Nevertheless in paper [2] it has
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been pointed out that for this choice of operators ξ̂μ

the statistical operator ρf(Z) does not exist because
of containing a linear form on Bose field operators
cαk, c+

αk in the exponent. The situation can be cor-
rected with the availability of a quadratic form of the
operators in the exponent; hence the statistical oper-
ator has a structure

ρf(Z) = exp{Φ(Z) −
∑

αk,α′k′
Zαα′

kk′ c+
αkcα′k′−

− (
∑

αk,α′k′
Z̃αα′

kk′ c+
αkc+

α′k′ +
∑
αk

Zα
k c+

αk + h.c.)}. (5)

In fact, it means that the minimal set of reduced de-
scription parameters of electromagnetic field contains
its binary fluctuations (correlations) besides its aver-
age strength though the average field can be absent.

3. VARIOUS APPROACHES TO
CONSTRUCTING THE KINETIC

EQUATIONS WITH BINARY
CORRELATIONS ACCOUNT

In order to describe binary fluctuations of the field,
normal nαα′

kk′ (t) = Spρ(t)c+
αkcα′k′ and anomalous

ñαα′
kk′ (t) = Spρ(t)cαkcα′k′ one-particle density matri-

ces (DM) can be used (a T-1 theory) as well as con-
nected with them normal

fαα′
k (x, t) = Spρ(t)̂fαα′

k (x)

and anomalous

f̃αα′
k (x, t) = Spρ(t)̂̃f

αα′

k (x)

Wigner distribution functions (WDF) (a T-2 theory)
where

f̂αα′
k (x) =

∑
q

c+
α,k−q/2cα′,k+q/2e

iqx,

ˆ̃f
αα′

k (x) =
∑

q

cα,k+q/2cα′,−k+q/2e
iqx. (6)

The anomalous DM and WDF are absent in a state
with the statistical operator ρf(Z) at Z̃αα′

kk′ = 0 and
average electromagnetic field equals zero at Zα

k = 0.
The terminology “normal-anomalous” is connected
with the concept of spontaneous break of symmetry;
herewith from this point of view a nonzero average
field value is also a consequence of some symmetry
breakdown.

Electromagnetic field fluctuations can be de-
scribed also with average values of field operators

〈ξx
αnξx′

α′l〉t =
1
2
Spρ(t){ξ̂αn(x), ξ̂α′l(x′)}, (7)

or corresponding correlation functions

(ξx
αnξx′

α′l)t = 〈ξx
αnξx′

α′l〉t − ξαn(x, t)ξα′l(x′, t)

(a T-3 theory).

The unique relationship of such theories proceeds
from the formulas (4) and their consequence

cαk =
e∗αkn

(8πωkh̄V )1/2

∫
d3x

[
Ẑn(x)

k
− iÊn(x)

]
e−ikx.

(8)
(Ẑn(x) ≡ rotnB̂(x)). T-2 and T-3 theories allow de-
scribing a spatial behavior of the electromagnetic field
in medium. Temporal equations for one-particle DM
and WDF are called kinetic equations for photons in
medium.

In the paper [3] a theory of T-1 type has been
built for electromagnetic field in equilibrium plasma
medium. The corresponding kinetic equations have a
form

∂tg
αα′
kk′ = i(Ωk − Ωk′)gαα′

kk′ −
− (νk + νk′)(gαα′

kk′ − nkδαα′δkk′ ),

∂txαk = −(iΩk + νk)xαk + (νk + iωkχk)x∗
α,−k (9)

where

gαα′
kk′ (t) = nαα′

kk′ (t) − x∗
αk(t)xα′k′ (t),

xαk(t) = Spρ(t)cαk,

Ωk = ωk(1 − 2πχk), νk = 2πσk (10)

(Ωk is a photon spectrum in the medium, nk is Planck
distribution with a medium temperature). The sec-
ond equation (9) is actually a Maxwell equation with
account of a material equation, at that σk and χk

are conductivity and magnetic susceptibility of the
medium expressed via the Green function of currents.
In terms of WDF in the case of weakly nonuniform
state of the system such kinetic equation takes the
form

∂tfαα′
k = −∂Ωk

∂kn

∂fαα′
k

∂xn
+

1
4

∂2νk

∂kn∂kl

∂2fαα′
k

∂xn∂xl
−

−2νk(fαα′
k − nkδkk′δαα′). (11)

4. KINETICS OF ELECTROMAGNETIC
FIELD INTERACTING WITH
NONEQUILIBRIUM SYSTEM

OF EMITTERS

In our papers (see [4]) electrodynamics in a medium
consisting of two-level emitters has been built. Such
a theory emerges in the course of research into the
Dicke superfluorescence [5] on the basis of the Bo-
golyubov reduced description method. A standard
approach lies in the framework of a theory of T-3
type.

Emitter subsystem is regarded as nonuniform and
it is convenient to describe it with a density of emitter
energy

η̂a : ε̂(x) = h̄ω
∑

1≤a≤N

r̂azδ(x − xa). (12)

Operators of the reduced description parameters of
the field subsystem in the developed theory are

ξ̂μ : ξ̂αn(x),
1
2
{ξ̂αn(x), ξ̂α′l(x′)}.
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Maxwell equations in terms of averages have the form

∂tEn(x, t) = c rotnB(x, t) − 4πJn(x, ε(t), ξ(t)),

∂tBn(x, t) = −c rotnE(x, t) (13)

with a material equation

Jn(x, ε, ξ) =
∫

dx′σ(x − x′, ε(x))En(x′)+

+c

∫
dx′χ(x − x′, ε(x))Zn(x′) (14)

where Fourier transforms of functions σ(x, ε), χ(x, ε)
are conductivity σk(ε) and magnetic susceptibility
χk(ε) of the system. Equations for field correlations
acquire the form

∂t(Ex
nEx′

l ) = c rotn(BxEx′
l ) + c rot′l(E

x
nBx′

)−

−4π(Jx
nEx′

l ) − 4π(Ex
nJx′

l ),

∂t(Ex
nBx′

l ) = c rotn(BxBx′
l ) − c rot′l(E

x
nEx′

)−
−4π(Jx

nBx′
l ),

∂t(Bx
nEx′

l ) = −c rotn(ExEx′
l ) + c rot′l(B

x
nBx′

)−
−4π(Bx

nJx′
l ),

∂t(Bx
nBx′

l ) = −c rotn(ExBx′
l ) − c rot′l(B

x
nEx′

). (15)

Current-field correlations are expressed via field cor-
relations by material equations obeying the Onsager
principle.

5. ENERGY FLUXES IN MEDIUM AND
CORRELATION FUNCTIONS

In kinetics of electromagnetic field the energy fluxes
in medium is a problem of interest. An operator of
energy flux is given by the formula

q̂n(x) =
c

8π
εnlm{Êl(x), B̂m(x)}. (16)

According to the reduced description method, in the
theory taking into account only binary field correla-
tions exact averages of binary field functions are de-
termined by the quasi-equilibrium field distribution.
Therefore the energy flux is expressed exactly via one-
particle DM or WDF. For example, if the average
field is absent, we come to an exact formula

qn(x) = h̄c2
∑
αα′

∫
d3k

(2π)3
ϕαα′

n (k,−i
∂

∂x
)fαα′

k (x) (17)

where the notation is used

ϕα1α2
n (k, q) = ϕα1α2

n (k − q/2, k + q/2),

ϕα1α2
n (k1, k2) ≡ 1

2
(δnlδms − δmlδns)(k1k2)1/2×

×{k̃1le
∗
α1k1seα2k2m + k̃2le

∗
α1k1meα2k2s}. (18)

In a weakly nonuniform state this formula leads to a
well-known elementary result

qn(x) =
∑

α

∫
d3k

(2π)3
ωkh̄

∂ωk

∂kn
fαα
k (x). (19)

Formula (17) should be put in the basis of the the-
ory of radiation transfer. The simplest consideration
is based on approximate expression (19). Radiation
transfer can be described by specific intensity of ra-
diation

Iαα′
ω (n, x) ≡ ω3h̄

(2π)3c2
fαα′
k (x)

∣∣∣
k=n ω

c

(20)

(|n| = 1). This definition gives formulas for energy
flux of the electromagnetic field

ql(x) =
∑
α

∫
Iαα
ω (n, x)nldωdΩn (21)

and its energy density

ε(x) =
1
c

∑
α

∫
Iαα
ω (n, x)dωdΩn (22)

which are in common use in the radiation transfer
theory [6].

Equation of the radiation transfer follows from
definition (20) and kinetic equation (11)

∂Iαα′
ω (n, x)

∂t
= −cωnl

∂Iαα′
ω (n, x)

∂xl
−

−2νω{Iαα′
ω (n, x) − Iωδαα′}+

+{aωnlnm + bωδlm}∂2Iaα′
ω (n, x)

∂xl∂xm
(23)

where the notations
∂Ωk

∂kl

∣∣∣∣
k= ω

c n

≡ cωnl, νk|k= ω
c n ≡ νω,

∂2νk

∂kl∂km

∣∣∣∣
k= ω

c n

≡ 4{aωnlnm + bωδlm},

Iω ≡ ω3h̄

(2π)3c2

1
eh̄ω/T − 1

(24)

are introduced. Usually this equation is written for
stationary states and without correction given with
the last term.

6. FIELD CORRELATION PROPERTIES
IN QUANTUM OPTICS

The most general approach of quantum optics to the
statistical properties of light is based on the technique
of photon counting and the concept of an ideal quan-
tum detector. Its operation analysis by Glauber [7]
has led to the conclusion that the simplest observable
correlation quantity describing electromagnetic field
is

Sp{ρÊ(−)
n (x, t)Ê(+)

l (x, t)}. (25)

It can be measured in the experiments of the first or-
der (for example, in the Young scheme). Here ρ is a
statistical operator of the field; Ê

(+)
n (x, t), Ê

(−)
n (x, t)
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are positive-frequency and negative-frequency parts
of the electric field operator (4) in the interaction
picture:

Ên(x, t) = Ê(+)
n (x, t) + Ê(−)

n (x, t),

Ê(−)
n (x, t) = Ê(+)

n (x, t)+, Ê(+)
n (x, t) =

= i
∑
kα

(2πh̄ωk)1/2

V 1/2
eαkncαk ei(kx−ωkt). (26)

In experiments of the second order (for example, the
Hunbury Brown-Twiss scheme based on photon de-
tection coincidence) observable correlation quantity
describing electromagnetic field is

Sp{ρÊ(−)
n1

(x1, t1)Ê(−)
n2

(x2, t2)×

×Ê
(+)
l2

(x2, t2)Ê
(+)
l1

(x1, t1)}. (27)

In more complicated experiments all correlation func-
tions of the form

Gss′
n1...ns,l1...ls′ (y1...ys, y

′
1...y

′
s′) =

= Sp{ρÊ(−)
n1

(y1)...Ê(−)
ns

(ys)Ê
(+)
l1

(y′
1)...Ê

(+)
ls′

(y′
s′)}

(28)
can be considered as observables quantities in quan-
tum optics (y ≡ (x, t)) [8]. Statistical operators built
with the Bogolyubov reduced description method can
be used in this formula as a statistical operator.

Note that appearance of operators Ê
(+)
n (x, t),

Ê
(−)
n (x, t) in formulas (25), (27), (28) instead of the

total field operator Ên(x, t) is a consequence of high
frequencies of electromagnetic field of visible spec-
trum.

Correlation functions of the first order G11 can
be expressed through the one-particle density ma-
trix nαα′

kk′ exactly and those of the second order G22

can be expressed through it only approximately. The
most interesting quantum correlation effects (such as
photon antibunching, squeezing, sub-Poissonian sta-
tistics) are described with correlation functions con-
cerning different time moments [8].

Introduced correlation functions contain averages
over normal product of operators of electromagnetic
field. In this case it is very convenient to use the
Glauber formalism of coherent states. Statistical op-
erator of electromagnetic field can be represented in
the Glauber-Sudarshan form [7]

ρ =
∫

d2zP (z, z∗)|z〉〈z|, (29)

where {|z〉} is basis of the coherent state representa-
tion

cαk|z〉 = zαk|z〉 (z ≡ {zαk}),
1
π

∫
d2z|z〉〈z| = 1, d2z =

∏
αk

d2zαk

zαk ≡ z′αk + iz′′αk, d2zαk ≡ dz′αkdz′′αk. (30)

In this formalism correlation functions take the form

Gss′
n1...ns,l1...ls′ (y1...ys, y

′
1...y

′
s′) =

=
∫

d2zP (z)E∗
n1z(y1)...E∗

nsz(ys)El1z(y′
1)...Els′z(y

′
s′)

(31)
where

Enz(x, t) ≡ i
∑
kα

(2πh̄ωk)1/2

V 1/2
eαknzαk ei(kx−ωkt).

(32)

7. FORMALISM OF GENERATING
FUNCTIONAL

A generating functional can be introduced for a sta-
tistical operator

F (u, u∗) = Spρe

�

αk

uαkc+
αk

e
−�

αk

u∗
αkcαk

, (33)

the functional giving possibility to calculate averages

Spρc+
α1k1

...c+
αsks

cα′
1k′

1
...cα′

s′k
′
s′

=

= (−1)s′ ∂s+s′
F (u, u∗)

∂uα1k1 ...∂uαsks∂u∗
α′

1k′
1
...∂u∗

α′
s′k

′
s′

∣∣∣∣∣
u,u∗=0

(34)
and the Glauber-Sudarshan distribution

P (z, z∗) =
1
π

∫
d2u F (u, u∗)e

�

αk

{u∗
αkzαk−uαkz∗

αk}
.

(35)
Formalism of generating functions was widely dis-

cussed in the frame of the reduced description method
(see, for example, [1, 9]). In this theory (a T-4 the-
ory) the quantum Liouville equation is written in
the form of equation for the generating functional
F (z, z∗) and integral equations of the reduced de-
scription method are formulated as equations for this
functional. In this theory generating functional for
the quasi-equilibrium statistical operator ρf(Z(n))
(see (5))

ρf(Z) = exp{Φ(Z) −
∑

αk, α′k′
Zαα′

kk′ c+
αkcα′k′},

Spρf(Z(n))c+
αkcα′k′ = nαα′

kk′ (36)

is given by expression

F (u, u∗) = e
− �

αk, α′k′
nαα′

kk′ u∗
αkuα′k′

. (37)

An example of the T-4 theory is given by the pa-
per [10] where kinetics of classical electromagnetic
field in equilibrium medium was studied with taking
into account all (not only binary) correlations of the
field as reduced description parameters.
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8. CONCLUSIONS

Kinetic theory of electromagnetic field in media
has choosing a set of parameters describing non-
equilibrium states of the field as a starting point with
necessity. The minimal set of such parameters in-
cludes binary correlations of field amplitudes. The
corresponding mathematical apparatus uses different
structures of averages: one-particle density matrices,
Wigner distribution functions, and conventional si-
multaneous correlation functions of field operators.
All approaches can be connected with each other
due to the possibility of expressing the main cor-
relation parameters in various forms. The reduced
description method elucidates the construction of ki-
netic equations in electrodynamics of continuous me-
dia (plasma, complex of two-level emitters) and ra-
diation transfer theory. The obtained results can be
analyzed with the help of approaches elaborated in
quantum optics.

This work is partially supported by the State
Foundation for Fundamental Research of Ukraine un-
der project No. 25.2/102.
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