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A string model of quark hadronization, taking the quark spin degree of freedom into account, is proposed. The

method for using the model in a Monte-Carlo code for jet generation is given.
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1. INTRODUCTION

In deep inelastic collisions, high energy, quasi-free
partons are produced in short distance (� 1 fm) sub-
processes, then are indirectly detected as hadron jets.
The transition partons → jets, called hadronization,
occurs at long distance (� 1 fm) by creation of new
quark-antiquark pairs. The pairs arrange themselves
in chains connecting the initially produced partons
in a way such that each jet is color neutral. Fig. 1
depicts such a chain in e+e− annihilation or W± de-
cay into quark qA + antiquark q̄B and no gluon. We
restrict ourselves to processes without baryon pro-
duction.
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Fig. 1. e+e− annihilation or W± decay in quark-
antiquark → hadrons

The recursive model. Looking at the upper part
of Fig. 1 from right to left, the hadronisation process

qA + q̄B → h1 + h2... + hN (1)

can be described as the recursive process [1, 2]

q0 → h1 + q1 ,

q1 → h2 + q2 ,

· · · · · ·
qN−1 → hN + qB .

(2)

n is the rank of the hadron hn. q0 ≡ qA and qB ≡ qN

is the charge conjugate of q̄B propagating “backward
in time” with 4-momentum qB ≡ −q̄B. The conser-
vation of 4-momentum holds at each step:

qn−1 = pn + qn , 1 ≤ n ≤ N, (3)

where pn is the hadron 4-momentum. qn designates
either the quark species or its 4-momentum. In the
simplest recursive model, the sharing between pn and
qn in (3) is made according to the splitting probability
distribution:

dζn d2qnT f(ζn, qnT) , (4)

provided the remaining mass square (qn + q̄B)2 is still
large. qT = (qx, qy), ζn = q+

n /q+
n−1 and q± ≡ q0± qz.

qA and q̄B define the +z and −z directions.
Including the quark flavor degree of freedom, is

relatively easy. The splitting function for q → h + q′

depends on the flavors and writes fq′,h,q(ζ, q′T).
In a straightforward way the recursive model

lends itself to the Monte-Carlo method for the simu-
lations of jets. Such simulations are essential in the
preparation and analyzis of any high-energy experi-
ment.

Fig. 2. String fragmentation

The string fragmentation model [3, 4]. Hadro-
nization of Fig. 1 is considered as the cascade decay of
a massive string stretching between qA and q̄B, called
dart. The space-time picture is shown in Fig. 2. At
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the nth string breaking point (starting from the right)
a qnq̄n pair is created. q̄n moves to the right, meets
qn−1 which is moving to the left and both form the
hadron hn, which is a short string and, in a pure clas-
sical model, oscillates like a yo-yo. If the null-plane
coordinate X− = t − z is used as time variable, the
hadrons are emitted in the ordering of (2) and the
string model can be treated as a recursive one, with
the symmetric Lund [4] splitting function,

fq′,h,q(ζ,q′
T,qT) (5)

∝ Za{q} (1/Z − 1)a{q′} exp
(
−b

m2
h + pT

2

Z

)
,

where Z = 1− ζ and a{q} ≡ aq(q2
T) depends in prin-

ciple on the quark flavor q and transverse momentum
qT. Note the dependence of f in both qT and q′

T.
Eq. (5) is used in the Monte-Carlo simulation code
PYTHIA, with a unique value a for a{q}.

The string fragmentation model is invariant un-
der:
− (a) rotations about the z-axis;
− (b) Lorentz transformations along the z-axis;
− (c) mirror reflection about any plane containing
the z-axis (equivalent to parity);
− (d) quark line reversal or “left-right symmetry”,
i.e., interchanging the roles of qA and q̄B.

The model is not covariant locally (step by step),
but global covariance holds for the whole process of
Fig. 1.

Role of the quark spin. There is experimental
evidence that the quark spin plays a dynamical role
in jet formation.
– A natural pT-dependent polarization of inclusive
hyperons has been observed for a long time. Most
proposed mechanisms involve the creation of a polar-
ized strange quark at qT �= 0.
– The Collins effect [5], yielding a transversely
polarized quark fragmentation function of the form
(Fig. 3)

F (z,pT ;S) = F0(z,p2
T) [1 + AT ST.(ẑ × pT)/|pT|] ,

(6)
has been established in semi-inclusive deep inlelastic
lepton-hadron scattering [6]. The analyzing power
AT = Aq0,h(z, pT) cannot be calculated in perturba-
tive QCD but could in principle be fully determined
by experiments.
– Another asymmetry, jet handedness [7, 8], has
been predicted for a longitudinally polarized quark.
Selecting, for instance, the 3 fastest hadrons of the
jet, h, h′ and h′′, there should be a correlation
between the sign of the helicity and the sign of
p · (p′ × p′′).

Collins effect for transversity and jet handedness
for helicity will provide complementary quark po-
larimeters. A theoretical model of jets with spin-
ning quarks will be usefull to optimize their analyzing
powers.

Fig. 3. Single-particle Collins effect

Inclusion of the spin degree of freedom. The
aim of this paper is to build a recursive model with
quark spin effects, not only for the initial quark but
along the whole quark line of Fig. 1. Translating it in
a Monte-Carlo algorithm is not trivial. In the case of
flavor, it suffices to draw lots for the species u, d or
s of the new quark at each step of (2). If we do the
same for quark helicity, we miss the pure transver-
sity states, which are linear combinations of helicity
states, and vice versa.

We will proceed in four steps. In Section 2
we review the classical “string + 3P0” mechanism
[4, 9] giving transverse spin effects. In Section 3 we
present the covariant quark-multiperipheral model us-
ing Dirac spinors. A reduction to Pauli spinors and
an ultra-simplified version [10] is reviewed in Sec-
tion 4. Finally, in Section 5, a semi-quantized string
model with Pauli spinors is presented and the corre-
sponding Monte-Carlo algorithm is described in Sec-
tion 6.

Notations. The symbol {qn}, in curly brackets,
e.g. in Eq. (7), represents the momentum and the
flavor of the nth quark altogether. A four-momentum
q is separated in its transverse part qT = (qx, qy) and
time-longitudinal part qL = (q0, qz). For the latter we
also use the null-plane coordinates q± = q0±qz . The
virtual mass square is q2 = qL

2 −qT
2 = q+q− −qT

2.
The polarization vector of a quark is decom-

posed as S = (SL,ST) where SL/2 = helicity, ST

= transversity. The associated density matrix is
ρ = (1 + S.�σ)/2, with S2 ≤ 1.

2. THE CLASSICAL STRING + 3P0

MECHANISM OF COLLINS EFFECT [9]

We consider the simplest case where all the emitted
partices are pseudoscalar mesons. Then (qnq̄n−1) is
a spin singlet. At a string breaking the qnq̄n pair is
assumed to be created in the 3P0 state with zero total
momentum (corresponding to the vacuum quantum
numbers). Fig. 4 depicts the recursive decay of the
dart when q0 has a transverse, anti-clockwise polar-
ization. (q0q̄1) is a spin-singlet, therefore q̄1 spins
clockwise. (q1q̄1) is a spin-triplet, therefore q1 spins
also clockwise. Due to the 3P0 configuration, the rel-
ative q1 − q̄1 orbital momentum L1 is opposite to
the spins, therefore anti-clockwise. It makes q̄1 move
upward and q1 move downward in the figure. The
upward momentum of q1 is taken by hadron h1, re-
sulting in a Collins effect, p1T being on the side of
S0T × ẑ.

Iterating this reasoning, q2 and q̄2 are spinning
anti-clokwise, L2 is clokwise, etc. It gives to h2, h3,
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etc. Collins effects of alternate sides. Of course, suc-
cessive spins are not so rigidly coupled and the Collins
effect decays along the quark chain. Nevertheless the
model predicts a Collins effect for h2 opposite to that
of h1 and reinforced by the fact that q1 and q̄2 move
on the same side. This is in agreement with experi-
ment.

The classical string + 3P0 mechanism also ex-
plains the polarization of inclusive hyperons [4].

Fig. 4. The string + 3P0 mechanism for Collins
effect

3. THE COVARIANT
QUARK-MULTIPERIPHERAL MODEL

The upper half of Fig. 1 looks like a multiperipheral
diagram [11], but with quark instead of meson ex-
changes. We treat qA and q̄B as on mass-shell quarks
and assume that the probability of the whole process
of Fig. 1 factorizes in the probabilities of the upper
and lower parts. The amplitude of (1) writes

M{qAq̄B → h1h2...hN}
= Γ{qB, hN , qN−1}Δ{qN−1} · · · (7)
· · ·Δ{q2}Γ{q2, h2, q1}Δ{q1}Γ{q1, h1, qA} .

Δ{q} = Dq(q2) (μq + γ.q) is the quark propagator.
μq is the quark mass. Dq(q2) is a fast decreasing
function of |q2|. Γ{q′, h, q} ≡ Γq′,h,q(q′, q) is the
q → h + q′ vertex function, which is a 4×4 matrix
in the space of Dirac spinors. For a pseudoscalar
meson, Γ{q′, h, q} = γ5 Gq′,h,q(q′

2
, q2). The model is

covariant locally, i.e., at each vertex and propagator.
Another important approximation is to neglect in-

terferences between several diagrams which lead to
the same final state. Then the total hadronisation
cross section writes (omitting the flux factor)

σ{q̄B , qA} =
∑
N

∑
h1,...hN

∫
d3p1 · · · d3pN

p0
1 · · · p0

N

× δ4(p1 + p2... + pN − qA − q̄B} (8)

× |v̄(q̄B ,SB)M{qAq̄B → h1h2...hN} u(qA,SA)|2 .

The second summation bears on the hadron species.
u(qA,SA) and v(q̄B,SB) are the Dirac spinors of qA

and q̄B.

4. REDUCTION TO Pauli SPINORS

We now describe the spin degree of freedom in the
most economical way, with Pauli instead of Dirac
spinors. We give up local covariance, but maintain

the invariances (a), (b), (c) and (d) listed in the intro-
duction about the string model. For this we replace
[10]
• u(q0,S0) by the Pauli spinor χ(S0)
• v̄(qq̄B ,Sq̄B ) by −χ†(−Sq̄B )σz

• γ5 by σz

• μq + γ.q by μq + σz σ.qT.
We also give up covariance for propagators. Thus,

Δ{q} = Dq(qL
2,qT

2) (μq + σz σ.qT) . (9)

An ultra-simplified model [10]. We consider
only pseudo-scalar mesons, with a momentum-
independent emission vertex σz , and take a factor-
ized, flavor-independent quark propagator

Δ{q} = DL(qL
2) exp(−BqT

2/2) (μ + σz σ.qT) .
(10)

Furthermore we ignore the mass-shell constraint

m2
n = (q+

n−1 − q+
n )(q−n−1 − q−n )

−(qn−1,T − qn,T)2. (11)

This crude approximation achieves the full decou-
pling of the longitudinal momenta from the trans-
verse ones and from the quark spin. The joint pT

distibutions of the n first mesons have simple expres-
sions, for instance

I(p1T,p2T,p3T) ∝ exp(−BqT
2
1 − BqT

2
2 − BqT

2
3)

×Tr
{
M3 M2 M1 ρ0 M†

1 M†
2 M†

3

}
, (12)

where ρ0 = (1 + S0.σ)/2 is the spin density matrix
of q0 and Mn = (μ + σzσ.qTn)σz . For complex μ
one has a Collins effect for each meson, the analyzing
power depending only on the meson rank. For h1,

AT = 2
Im(μ) |p1,T |
|μ|2 + p2

1,T

. (13)

The above ultra-simplified model is a kind of
theoretical laboratory. It reproduces the transverse
spin effects of the classical string + 3P0 mechanism
and predicts jet handedness. It can be extended to
mesons of nonzero spins [10].

5. THE SEMI-QUANTIZED STRING
MODEL

Let us first consider spinless quarks and mesons. Fol-
lowing the sum-over-histories approach of Feynman,
to the classical string history of Fig. 2 we associate
the amplitude

M(qAq̄B → h1h2...hN ) = exp [(−iκC + 2iκ)A]

× (
q+
Ap−1

)α{qA} × (−p+
1 p−2 − i0)α{q1} · · · (14)

· · · (−p+
N−1p

−
N − i0)α{qN−1} × (p+

N q̄ −
B )α{qB}

× g{qB, hN , qN−1} · · · g{q2, h2, q1} g{q1, h1, q0} .

• A is the space-time area swept by the dart.
κC = κ − iP/2 is the complex string tension of the
dart [12], accounting for its unstability (in analogy
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with the complex mass m− iΓ/2 of an unstable par-
ticle). The string fragility P is the probability of
string breaking per unit of space-time area swept by
the string. κ � 1 GeV/fm, P/κ ∼ 10−1. We will use
b ≡ P/(2κ2).

The exponent of the first line contains the pure
string action of the dart (proportional to −κC) and
“missing propagation phases” (proportional to 2κ) of
the final hadrons, taking into account their different
emission points [13].
• The first and last power-law factors of the 2nd and
3rd lines take into account the quark actions of qA

and q̄B, which in the case of non-zero mass follow the
pieces of hyperbolas in Fig. 5. We have

α{qA} = (b − i/κ)μ2
A/2 (idem for q̄B). (15)

These factors also take into account the “missing
string area” between the hyperbolas and the broken-
line trajectories that would be followed by massless
quarks.

Fig. 5. Trajectories of massive qA and q̄B

• The intermediate power-law factors take into ac-
count the actions of the quarks and antiquarks pairs
created at string ruptures. One may take the ana-
lytic continuations of (15), replacing q+

A by −p+
n , p−1

by p−n+1 :

α{qn} = (μ2
n + q2

nT) (b − i/κ)/2 . (16)

For real μn the modulus square of the nth factor is

(p+
n p−n+1)

b(μ2
n+q2

nT) exp[−π(μ2
n + q2

nT)/κ] , (17)

which contains the characteristic exponential factor
of Schwinger tunneling [4]. In Fig. 6 we have repre-
sented tunneling by a dotted line linking the classical
hyperbolic trajectories of qn and q̄n.

There is however a limitation to Eq. (16). The
tunneling length 2ET/κ = 2(μ2 + q2

T)1/2/κ must be
smaller than the string length which is of the order
of P−1/2. As a matter of fact the production of large
ET quarks is not in the domain of the string model,
but of perturbative QCD. Besides, 
eα{qn} should
not be too large. One may cure this requirement by
setting b = 0 in Eq. (16).

Fig. 6. Tunneling trajectories of qn and q̄n

• The last line contains vertex functions

g{q′, h, q} ≡ gq′,h,q(qT
′2,qT

′.qT,qT
2) (18)

which depend on flavours and transverse momenta,
but not on longitudinal momenta. Quark line rever-
sal imposes g to be symmetric under the interchange
{q;qT } ↔ {q′;q′

T }.
Expressing the fully differential cross section of

(1) as the modulus square of (14) for the one recov-
ers the symmetric Lund model [4].

Fig. 7. Spin matrices to b inserted in the string
amplitude

Inclusion of quark spin. Spin is simply included
by inserting the 2×2 matrices of the ultra-simplified
model of Section 4. Fig. 7 indicates where such ma-
trices operate. Restricting ourselves to pseudoscalar
meson production, we have to multiply the expression
(14) by the chain of 2×2 matrices

σz (μN−1 + σzσ.qTN−1)σz · · ·
· · · (μ2 + σzσ.qT2)σz (μ1 + σzσ.qT1)σz . (19)

To sum up, the fully differential cross section of (1)
with polarized qA and q̄B is given by

σ{q̄B, qA} =
∑
N

∑
h1,...hN

∫
d4q1 · · · d4qN−1

× 2δ(p2
1 − m2

1) · · · 2δ(p2
N − m2

N )

× ∣∣χ†(−SB)σz Mχ(SA)
∣∣2 , (20)

M being given by (14) times (19).
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Unlike the ultra-simplified model of [10], the
present string fragmentation model takes into ac-
count the mass-shell conditions properly.

6. RECURSIVE MONTE-CARLO
ALGORITHM

To apply Eq. (20) in Monte-Carlo simulations, we
have to put the model in a recursive form. This will
be done in 5 steps:
− re-express M as a multiperipheral amplitude,
− introduce the cross section matrix R of the reac-
tion qn+q̄B → hadrons, and write a recursion relation
for it,
− write the Regge behavior of R at large (qn + q̄B)2,
− give the receipe for the Monte-Carlo generation of
the 4-momentum qn once qn−1 and the polarization
Sn−1 are known,
− write the formula giving Sn knowing Sn−1, qn−1

and qn.
In the following we use units such κ = 1, κC =

1 − iP/2 = 1 − ib.

Multiperipheral form of M . The string ampli-
tude (14) times (19) can be put in a multiperipheral
form. The splitting amplitude, which we define as the
product of the nth vertex and the nth propagator,
writes

Tn ≡ T {qn, hn, qn−1} = Δ{qn}Γ{qn, hn, qn−1}
= exp

[
(i − b) (q+

n−1p
−
n )/2

]
× (q+

n−1p
−
n )α{qn−1}(−p+

n /q+
n − i0)α{qn}

× g{q′, h, q} (μn + σzσ.qnT)σz . (21)

Introducing the sub-amplitude MN−n for qn + q̄B →
hn+1 + · · ·hN , we have

M ≡ MN = MN−n Tn · · ·T2 T1. (22)

The cross section matrix. Using (22), the n-
particle inclusive cross section with polarized quarks
writes

dσ(qA + q̄B → h1, · · ·hn + X)
d3p1/p0

1 · · ·d3pn/p0
n

= Tr{ ρ0 T †
1 T †

2 · · ·T †
n Rn Tn · · ·T2 T1} , (23)

where ρ0 is the spin density matrix of qA and

R(qn) =
∑
N>n

∫
d3pn+1 · · ·d3pN

p0
n+1 · · · p0

N

×M†
N−n σz

1 − σ.S(q̄B)
2

σz MN−n (24)

is the cross section matrix [14] of the reaction qn +
q̄B → hadrons. It operates in the space of the qn

spin states. It also depends on the antiquark polar-
ization S(q̄B), but at large (qn+q̄B)2 this dependence
is negligible and we may take S(q̄B) = 0.

Fig. 8 represents the unitarity diagram giving the
total qA + q̄B cross section matrix R(qA) in the mul-
tiperipheral picture. Encircled in dashed line is the
unitarity diagram for R(q1). The general cross sec-
tion matrix R{q} satisfies the integral recursion rela-
tion

R{q}=
∑

h

∫
d3p
p0

T †{q′, h, q}R{q′}T {q′, h, q} . (25)

Fig. 8. Unitarity diagram for R

Regge behavior of R{q}. It is known that the
unitarity diagrams of the multiperipheral model build
up an output reggeon. Thus we assume a Regge be-
havior at large (q + q̄B)2 for the cross section matrix:

R{q} ∼ |(q̄B)−q+|αout
[
βq(q2

T) + γq(q2
T)σzσ.qT

]
.

(26)
A preliminary numerical task consists in calculating
αout and the Regge residue functions, βq(q2

T) and
γq(q2

T), using Eq. (25).

Monte-Carlo generation of momenta. Suppose
that we know the flavor and momentum of quark
{q} ≡ {qn−1} and its polarization S ≡ Sn−1. From
Eqs.(25) and (26) , one can write the q + q̄B →
hadrons cross section as

σ{q + q̄B} = Tr {ρ R{q}} = |(q̄B)−|αout
∑

h

∫
d3p
p0

×(q′+)αout Tr
[

T {q′, h, q} ρ T †{q′, h, q}
× [βq′ (q′

T
2) + γq′(q′

T
2)σzσ.q′

T]
]

(27)

with h + q′ = q and ρ = (1 + σ.S)/2. The ex-
pression in the last two lines is proportional to the
probability that quark {q} ≡ {qn−1} emits a hadron
{hn} of species h and 4-momentum p. Following the
Monte-Carlo method, one generates h and p at ran-
dom according to this probability. {q′} ≡ {qn} is
then fixed by the conservation of charge, strangeness
and 4-momentum.

Polarization of the next quark. Once the fla-
vors and momenta of {p} ≡ {pn} and {q′} ≡ {qn}
are known, the {q′} polarization is given by

1 + σ.S′

2
≡ ρ′ =

T {q′, h, q} ρ T †{q′, h, q}
Tr ( T {q′, h, q} ρ T †{q′, h, q} )

.

(28)
The trace is symbolically represented in Fig. 9 for the
case n = 1.
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Fig. 9. Loop diagram representing the trace in
Eq. (28)

7. CONCLUSIONS

We have given the principle of a recursive quark frag-
mentation model which includes the spin degree of
freedom. Since the latter has an essentially quantum
nature, we started from amplitudes rather probabili-
ties.

The model can produce the spin asymmetries of
Collins and jet handedness, if we give an imaginary
part to the quark mass μ. For the moment we have
no theoretical justification for that, but no argument
against. In fact μ may not be the actual quark mass
but some parameter of the nonperturbative physics
of hadronization. Anyway, we do not claim that our
model is closer to reality than other ones. It is just
a first attempt to treat spin in a systematic man-
ner in jet physics. Much work remain to be done to
implement this model in a jet simulation code like
PYTHIA.
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