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It is shown that values of the Green functions for the Klein-Gordon and Dirac equations depend on calculation
method. The integrals for the Green functions of new equations can converge if the minimal numbers of the particles
equal three for spinless particles and five for 1/2-spin particles. It leads to the existence of massive generations for
the photon and the gluons. It is shown that the interaction potentials have oscillatory form at short distances.
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1. INTRODUCTION

In the quark model it has been shown that the
hadrons consist of the quarks of six flavors. Therefore
now the leptons, the quarks, the photon, the gluons,
the W+ | and the Z° only are consider as elementary
particles. The study of the axial Adler-Bell-Jackiw
anomaly has shown that the contribution of one 1/2-
spin particle (a quark or a lepton) gives linear diver-
gency. But taking into account of some sets of lep-
tons and quark such as e, v, u, dor u, v,, ¢, sor
T, Vs, t, b allows to eliminate this divergency. Thus
the convergence of the axial anomaly gives the rela-
tion between the quarks and the leptons.

In connection with this the question arises: why
do the generations of particles exist? We can re-
member the words of L.B. Okun that we good un-
derstand the reasons for the existence of some new
particles. But we do not understand: why do old par-
ticles (for example the muon) exist? In present paper
we show that for each particle must exist other par-
ticles with different masses but with the same spin,
electric charge, and parity.

2. PARADOX OF GREEN FUNCTIONS

Consider the particle propagators, i.e. the Green
functions. It is well known that in the static case
the exchange by the particle of the mass m gives the
Yukawa potential
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where r = |Z|. Note that we can put m = 0 in Egs.
(1), for the Coulomb potential. In the relativistic
case the exchange by the boson of the mass m can
be expressed by means of the Green function for the
Clein-Gordon-Fock equation
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For the 1/2-spin particle the Green function of the
Dirac equation has a form
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Usually the expressions for the Yukawa potential is
derived from (1) by the calculations of the integrals
in the spherical frame. Note that the integral in (1)
is the infinite threefold integral. As it is known the
improper (in particular infinite) integral converges in
that case only if the calculations of it give the same
finite result by any possible methods. The conver-
gence of improper onefold and multiple integrals have
some distinctions. Such for multiple improper inte-
gral the conditional convergence does not exist. In
[1, 2] it is proved that if the twofold improper inte-
gral converges then it converges absolutely also (i.e.
the improper twofold integral with the module of the
integrand converges). This is valid for any multi-
ple improper integral too [2]. Thus for the multiple
improper integrals the convergence and the absolute
convergence are equivalent [2]. Therefore multiple
improper integral converges then and only then when
this integral converges absolutely. Thus the integral
in (1) converges only in case of the convergence of the
integral
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But this integral diverges. Therefore the integral in
(1) diverges. To see this we shall integrate (1) in the
cylindrical frame. We choose 7 = (0, 0, r). Then
Gr = q3r and d3q = 1/2d \(j]_|2 dpdqs. We shall inte-
grate in the next order: with respect to the angle ¢,
|7L|, g5 , respectively. Thus we derive
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We see that this integral diverges as the first term is
indefinite and the limit in the second term does not
exist, but these diverging terms do not depend on the
particle mass m.

Thus we derive the paradox (paradox of the Green
functions). From the mathematical point of
view the use of the Green functions (1)-(3)
is incorrect, but these Green functions (calcu-
lated by some fashion) give adequate descrip-
tion of different experimental data.

In Ref. [3] it is shown that the integrals (2), (3)
diverge too. We may assume that the solution of the
Green function paradox is possible by two ways: 1)
we can conclude that existing theory is wrong and
we must find new theoretical approach based on new
mathematical methods; 2) we can try to modify ex-
isting theory.

3. GENERALIZATIONS OF
KLEIN-GORDON AND DIRAC
EQUATIONS

We consider second way by means of proper modifica-
tion of the Green functions and corresponding gener-
alization of the Klein-Gordon and Dirac equations.
We propose: 1) the generalizations of the Klein-
Gordon and Dirac equations must have some simple
form; 2) the existing expressions can be derived from
new generalized Green functions in some limit. We
propose that the generalized non-homogeneous Klein-
Gordon equation is the 2N-order equation and may
be written as

(O +mi) (0 +m3)...(3 +mR)e(z) =n(z), (6)
where ¢(z) is the field and n(z) is the current (the
field source). The Green function for Eq. (6) is given
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where Py (g?) is the polynomial of the NV degree with
respect to q2.

The general classical solution ¢.;(x) of the linear
equation (6) is the sum of the general solution of the
corresponding homogeneous equation ¢f(x) and par-
tial solution ¢, () of non-homogeneous equation:
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where ¢ and ¢ are the arbitrary constants. Thus
@¢(x) is the sum on the terms corresponding to par-
ticles with the same charges, parity, spin but with
different masses. FEach term in (8) corresponding to
number k is the solution of the homogeneous Klein-
Gordon equation. In Ref. [3] it is shown, that the
functions ¢¢(x) are non-normalizable if at least two
masses are equal. Thus the masses in the general-
ized Klein-Gordon equation must be different. We
can write
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For the A}, coefficients the relations are valid:
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Using the equality (9) we can express the Green
function (7) of Eq. (6) in terms of the Green func-
tions (3)

N
G(z) =Y AD(x, my).
k=1

As the dimension of the time-space is equal to four
the integral (7) can be convergent at N > 3. Con-
sequently for each spinless particle two (or greater)
particles with the same charges, C- and P-parity, but
different masses, must exist in addition. We may say
that such particles are members of some set (a fam-
ily or a kind or a dynasty). The members of different
kinds belong to the generation. In Egs. (8), k is the
number of the particle generation. We may assume
that the member quantity for the elementary particle
kinds are less than the member quantity for the com-
posite particle kinds. Each particle belongs to some
kind and some generation.

For the 1/2-spin particles we propose the next
generalization of the non-homogeneous Dirac equa-
tion

(12)
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where « is the bispinor index. The Green function
for this equation may be written as

S(x) = L><
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></ (@+m1)(@+ ma)....(T+mn)
(—¢* +mi) (=¢* + m3)...(—¢* + m%,)
The integral (14) can be convergent at N > 5 only.
Thus for each %-spin particle four (or greater) par-
ticles with the same charges, isospin, P-parity, but
with different masses, must exist in addition. In Ref.

d*q. (14)

1
[3] the formulae for the —-spin particles similar to
formulae (9)-(12) are derived.

4. ABSENCE OF SINGULARITIES IN
GREEN FUNCTIONS OF GENERALIZED
KLEIN-GORDON AND DIRAC
EQUATIONS

Since the generalized Klein-Gordon equation (6) and
generalized Dirac equation (13) have degree greater
than four their Green functions and their first par-
tial derivatives can be continuous function of the
time and spatial variables, i.e. these Green functions
cannot have any singularities (more precisely these
Green functions can have the removable discontinu-
ity). Note that the Green functions of the Klein-
Gordon equation have singularities on the light cone,
such as §(x?), 1/2%, ©(«?), In|z?| [4, 5]. The singu-
larities disappear in causal D(z)., advanced D(x)qdy,
and retarded D(z),¢; by similar fashion. For exam-
ple, we have the generalization of the Yukawa poten-
tial
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Each term of the sum in (15) has singularity at

r = |7| =0 (i.e. on the light cone 22 = 0 — r? = 0).
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This G(7') has no any singularities, as contrast with
the Goulomb and Yukawa potentials. From (16) we
see that at short distances the potential must have
the form of harmonic oscillator. The oscillatory po-
tentials are widely used in the nuclear physics and in
the quark models. The interaction force at small r
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has no any singularities too. It is interesting to note
that F'(0) = 0. Therefore we may assume that all the
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interactions must be relaxed at short distances. It is
similar to asymptotic freedom.

Note that if to use for V(r, my) the result (5) de-
rived in the cylindrical frame then the contributions
of the diverging terms vanish, as consequence of the
relation (11) at [ = 0. Thus we derive (16), (17) for
G(@ mk) (1) and (5). This confirms the convergence
of G ( )

5. SOLUTION OF GREEN FUNCTION
PARADOX

Consider the question about the reproduction of the
results derived early (such as Yukawa potential) in
our approach. It easy to see from (15) that at rel-
atively large r in the sum the term including m; is
important only, i.e. at relatively large r G(Z) ap-
proximately is equal to the Yukawa potential. Simul-
taneously large r corresponds to small components
of the g-momentum. Assume that mi/my < 1 for
k=2,3,..,N. Then we can rewrite approximately
the equations (6) and (13) in forms

(O +m2)m3..
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myp(x) = n(z),

~myY(z) = x(x). (18)
These equations practically coincide with the non-
homogeneous Klein-Gordon and Dirac equations for
the particles with the m; mass. We can reduce at
large distances (i.e. in low-energy approximation)
the equations (6) and (13) to the non-homogeneous
Klein-Gordon and Dirac equations, respectively, by
means of the redefinitions of the interaction currents.
We have seen from (5) that the calculations of the
Coulomb and Yukawa potentials by means of the in-
tegral (1) are incorrect. But we have derived these
potentials as large-distance limit of the Green func-
tion for the generalization of the Klein-Gordon equa-
tion in the static case (15). In consequence of this and
approximate validity of the Klein-Gordon equation at
low energies (at large distances) we may assume that
the use of the Coulomb and Yukawa potentials in the
low-energy physics is admissible. In particular the
results derived in the solid state physics, the plasma
physics, the statistical physics, the atomic physics,
and low-energy nuclear physics are valid.

6. KINDS OF ELEMENTARY PARTICLES

Consider the distribution of the elementary particles
in the kinds (or the dynasties). For the photon and
gluon m; = 0. Since for the particle of integer spin
N > 3 two (or greater) massive members of the pho-
ton kind must exist. They must have zero electric
charge, JP = 17, C = —1. These particle must
contribute to amplitudes of ete™ — ete™, ete™ —
wr ™, eTe” — hadrons at high energies and give the
resonance behavior. We can expect that the coupling
constants for the interactions of these members of the
photonic kind with the leptons and the hadrons of the
same electric charges must be equal. Therefore the
vector mesons p, w, ¢, J/1¥ cannot be the members



of the photonic kind. We conclude that the correc-
tions to the Coulomb law must be at small distance
in addition to the corrections of the quantum elec-
trodynamics [6]. Similarly in the gluonic kind two
(or greater) massive colored particles must exist. Be-
sides two (or greater) massive members must exist in
the Z% and W#*-kinds. In relations with the nec-
essary existence of massive photons and gluons such
questions arise: 1) Is the gauge invariance for mas-
sive photons and gluons possible or not? 2) Does the
scaling in deep inelastic lepton — hadron scattering at
higher energies exist or not?

1
It has been shown that for the §—spin particles

the number of the kind members (i.e. generations)
must be equal to 5 (or greater). We assume that elec-
tron kind (e; = e, ea = u, e3 = 7, ey, €5, ...), the
neutrino kind (v1 = ve, vo = vy, V3 = Vs, V4, Vs, ...),
three  kinds of the coloured  wup-quarks
(u1 =u, us =c¢, ug =1t, ug,us,...), and three kinds
of the coloured down-quarks (dy = d, d2 = s, d3 =
b, dy, ds,...) exist. Note that in our approach only
one neutrino may be massless. The higher members
of the electron and quark kinds can decay. For exam-
ple e4 and es can decay into evv, pvv (similarly
to 4 — evrv), and v+ hadrons. We can assume
the possibility of radiative decays e4, €5 — 7y or
eq,e5 — Wyy. We can expect that such interac-
tions of the higher Z° and W* will be fairly weak in
comparison with the interactions of Z9 = Z°(92.4)
and Wit = W*(81) (in GeV), as consequence of big
masses of the higher Z° and W* . We may assume
that: 1) Z9 or Z§ or W5 or Wi can interact with
right currents; 2) the interactions of Z9 or Z9 with
fermion may be determined by the mixing matrix
similar to the Kobayashi-Maskawa matrix and Z9
or Z9 can induce the transitions between the fermi-
ons of different generations (like to the s — Wy u-
transition). Therefore in addition to the investiga-
tions of the decays Z3§ 3 — pp~ X [7] it is of interest
the study of the decays ZSV3 — pFe¥X, which are
forbidden in the Standard Model.

If higher neutrino are enough heavy then fairly
exotic decay v4, 5 — euvi, o becomes possible. Since
for fermions N > 5 the Kobayashi-Maskawa matrix
must have the fifth (or greater) order. This can be
important for the effects of C' P-violation.Possibly the
leptons and the quarks from the fourth and fifth gen-
erations can be observed in Fermilab or LHC.

7. ON EXISTENCE OF BLACK HOLES

As it is known the assumed black holes have high den-
sity and induce such strong gravitational fields that
any particles including photons, cannot be emitted.
In accordance with the calculations the density of the
black holes can be higher than the nuclear density.
Possibly the black holes correspond to the singulari-
ties in the time-space. But the existence of the black
holes are predicted in the classical physics without
the considerations of the quantum effects, which are
just important on small distances. It is known that

the classical physics leads to the contradictions with
the reality on atomic distances, i.e. on atomic radii
and distances between the atoms in the water and
solid states (which correspond to the water density).
Indeed in accordance with the classical physics the
electron must lose the energy in consequence of the
light emission and it must fall on a nucleus. Thus
in accordance with a classical physics an atom can-
not exist more than 1071% ¢. The stability of atoms
is derived just in the quantum mechanics, i.e. tak-
ing into account of quantum effects allows to un-
derstand the phenomena at short distances correctly.
The distances corresponding to black holes are less
than 1 fm. Thus we may conclude that the question
on the existence of black holes can be solved in the
quantum theory of the gravitation only.

Consider some quantum effects. 1) It is well
known that the stable state of any physical system
corresponds to the lowest energy level. The object
before the transition into the black hole has a strong
gravitational field and this object can reduce own
energy level by means of the photon radiation and
in consequence of this the strength of the gravita-
tional field will decrease. Thus such object will not
transit into black hole. This agrees with the re-
sult derived by Howking that the small black holes
disappear; 2) Consider the elastic electron — proton
scattering in the one-photon (or one-graviton) ex-
change approximation. In c.m.s. the transfer energy
equals zero, but the 3-momentum transfer is non-
zero, i.e. the 4-momentum of the virtual space-like
photon ¢ = (0, ¢), where ¢ # 0. It corresponds to
the infinite velocity of the virtual space-like photon.
Possibly it may be interpreted that the velocities of
virtual particles can be superlight on small distances;
3) In Ref. [3] the equations for 1- and 2-spin fields
with my = 0 are derived. These equations have form
of Eq. (6). Therefore the solutions of these equa-
tions must be continuous functions and the force of
the gravitational interaction is proportional to the
distance, in agreement with Eq. (16) on small dis-
tances.

We may assume that in addition to the massless
graviton must exist two (or greater) massive gravi-
tons, similarly to the photons and the gluons. Note
that the since the gravitons have got the spin 2 the
currents of the gravitation interaction must obey the
theorem on currents and fields as well as the theo-
rem on current asymptotics [8-12]. Possibly in such
approach the anomaly related to the interaction of
the graviton with two photons will be finite, i.e. the
quadratic divergence [13] disappears.

Thus the consideration of the quantum effects al-
lows to expect that the existence of black holes is very
problematic.

8. CONCLUSION

We have shown that the Klein-Gordon and Dirac
equations must be modified as the integrals for their
Green functions diverge. The integrals for Green
functions of proposed equations for 0- and 1/2-spin
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HEOBXOJIVMOE OBOBIITEHUE YPABHEHUI KJIEMHA-TOPJIOHA 1 IVUPAKA U
CYIMIECTBOBAHUE ITOKOJIEHNUM YACTMHNII

IO.B. Kyauw, E.B. Pubauyx

[Tokazano, uro 3uavenus dyukiuii ['puna ypasuennit Kieitna-I'opgona u Iupaka 3aBUCAT OT METOIA BbI-
qucsenus. Marerpasst misa Gyuknuii ['prHa HOBBIX ypaBHEHU MOTYT CXOJAUTHCS, €CJIM MUHUMAJIBHOE KOJIU-
YECTBO YaCTUIl PABHO TPEM Jjis GECCIMHOBBIX YACTUI| U TATh JJId YaCcTUIl CO CIUHOM 1/2. D10 NpuBOIUT K
CYIIIECTBOBAHUIO MACCUBHBIX [MOKOJIEHUH /it (POTOHOB 1 ri1iooHOB. [lokazano, 4To moTeHImasibl B3anMo,1eii-
CTBUS HA MAaJbIX PACCTOAHUSAX MMEIOT OCIUJIIATOPHYIO (PopMYy.

HEOBXIJIHE Y3ATAJIbHEHHS PIBHSIHb KJIEMHA-TOPJIOHA I JJIPAKA TA
ICHYBAHHZ ITOKOJITHb YACTNHOK

I0.B. Kyaiw, O.B. Pubawyx

ITokazano, mo 3nadenns Gyukmin I'pina pisaanp Kieitna-Topmona ta [lipaka 3amexkarb Big meroma o0-
qucienb. larerpanu ansa dyskmii I'pina HOBUX piBHSAHD MOXKYTH 30iraTwucs, sIKIO MiHIMaJjbHA KUIHKICTbH
YACTUHOK JOPIBHIOE TPHOM Jijis 6e3CIIHOBUX YACTUHOK 1 ’ATH Jjis 9acTUHOK i3 crminoM 1/2. Ile npuBogurh
JI0 icCHYBaHHSI MaCHBHUX MOKOJIiHD /st (hOTOHIB i ryroowiB. [lokazano, 1m0 mOTeHIia I B3a€MO/Ii# HA MAJIAX
BiICTAHSIX MAIOTHh OCIUIATOPHY (HOpMy.
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