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WAVE TRANSFORMATION FROM STATISTICALLY ROUGH SURFACE
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The generalized small perturbation method is applied to investigate the transformation of waves on statistically rough surface se-
parating media in which several types of waves caused by a time and spatial dispersion propagate. The field boundary conditions have been
formulated. The mean intensity of the transformed fields have been calculated.
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Wave scattering from statistically rough sur-
face is a subject of current interest [1, 2]. Transfor-
mation and scattering of waves from a randomly
rough interface between media, in which several
types of waves propagate, have been studied in the
Kirchhoff approximation [3]. Wave scattering is the
particular case of transformation when an incident
wave transforms to a wave of the same type. Spatial
and time dispersion, of media give rise to the occur-
rence of several waves which differ from each other
by their dispersion law, i.e., the frequency depen-
dence on the wave vector.

In the present work the method of small
perturbations is generalized and used to investigate
the transformation of waves in cases in which the
Kirchhoff approximation can not be applied.

Let us consider two semi-infinite half spaces
of different media with several type of waves. For the
sake of simplicity, we assume that the number of
waves is the same in each medium. The media are
separated from each other by a statistically rough
surface

z=5lx ) (1)
where g(x, y) is a random uniform function with the
following statistical properties:

(c(x,y))=0; (2, 2)
(cley)lx.y ) =K(x-xy-y}  (2.b)
<g2> = K(O) = const, (2,¢)

where K(x—x’,y—y’) is the correlation function,
and averaging is denoted by brackets () As one

can see from Eqgs. (2, a — 2, ¢), the mean value of the
function ¢ is equal to zero, and the correlation func-

tion K is a function of the differences x—x',
y—y'. The applicability test of the small perturba-

tion method [1, 2] is supposed to be carried out, i. e.
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where A is the smallest length of the waves propa-
gating in both media. In what follows, in the medium
z>¢(x,y) all variables are denoted by index «

<<1, 3)

i

G(XJ)‘ 1,
A

while in z < ¢(x, ) by index f.
The equations describing the field £, and
E 4 can be presented as follows:

Ha,ﬂ(—lﬁ,l%j@,ﬂ(?,r)=o, @)

iot i
where H, and H, are arbitrary functions of their
arguments _lﬁ’ —li Egs. (4) can be partial
i ot ior

differential equations, integral equations with differ-
ence kernels, finite difference equations, and equa-
tions of mixed type, describing a wide range of wave
processes [4].

The equations must be supplemented with
boundary conditions on the surface (1) and radiation
conditions. As Eqgs. (4) have a general form, the form
of the boundary conditions should be the same. The
similar approach is applied in [5]. The boundary con-
ditions on the surface (1) can be written in the fol-
lowing general form

10 ~
Qam(g + 0’;Ean (erg + 0):
®)
10 ~
B = Qﬂm(g - Os;Ean (ria S— 0)?
where 7, is a vector with components (x, y);
0 0Js 0

o 0z oF R,
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is the derivative with respect to the normal;
m=12,..L; Lis the number of waves in the media

a and f.
The operators O, ; in the boundary condi-

tions (5) can be differential, integral, finite difference
and mixed type.

If the inequalities (3) are satisfied, the fields
E, and Ej can be found in the form

al>
and

|E 0| >> |Eaal: |Eﬁo| >> |Eﬂ1|. (6,b)
The variables E,, and Eg, describe the

interaction of waves with the unperturbed interface
z=0 while E,, and Ep characterize the scattering

on the roughness g(x, y). In this approximation, the

. . 0
square root in the expression for = can be replaced
n

by unity. In the approximation of the small perturba-
tion method, O, 5, can be expanded as a power

series in ¢ and %
or

onl5: 2% - o012}
Lo %)
+Qs,z(o,1ijg- i) 2,
i 0z i 0z)0F, oF,
where

ioz
The replacement of & by £ in Eq. (7) gives rise to
the expansion for Qp,. The boundary conditions for

the fields of zero and first approximations can be
obtained from Egs. (7). The result is

Q,‘,,,ZC jj 0 -Q;;[l = jEﬂo oy ®)
042 - 08 +2 ) -

| e 1 - ©
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As noted above, the boundary conditions (5) are giv-
en in the general form and can be used to solve a
wide range of problems. In Eq. (5), O depends on

6%’ however, this dependence does not change the
T

essence of the matter and may be omitted. The boun-
dary conditions (8) and (9) should be supplemented
with radiation conditions. The fields of zero — F

E,, Ep satisfy the

a0

E 4, and first approximations — E,;,

equations (4).
Let us assume that the fields are monochro-
matic and have the following form

E, 4 (%, t): Ea’ﬂ(a), ?)exp(— ia)t).
Substituting the expressions for E, ﬁ(?, t) into
Egs. (4), the equations for £, 4 (aJ

10 ~
Haﬂ(a) ——anﬂ(r
or

,#) can be obtained

a)) 0, (10)

where
Ea,ﬂ(wa7)= an,ﬂo(w=7)+ Ea1,ﬁ1(a’77)a

and an’ﬂo(a)f), Ea’/,(a),F) satisfy the Eq. (10). In

what follows, the argument @ will be omitted if no
misunderstandings follow.

Firstly, the problem of zero approximation,
i. e. Egs. (10) with the boundary conditions (9) and
the radiation conditions is solved. Let us suppose that
L different waves propagate in the media « and f.

Then, the solution of Egs. (10) has the form

an(?):
= i 1(0)(121)37‘9{ iFua _kzl(;lljz:l } + (1)

+ zi;‘AIO(N )exp{ Fjl + kzl(lzl H };

Eﬁo( ) ZBIO ’fu)exp{ [’fu’l —1cy (%) )z ]} (12)
1=1
where k,, ¥, 7, are vectors with components &,
k,; k., k,;x,y correspondingly.
The first term in Eq. (11) describes the inci-

dent waves, the coefficients A,(O)(l; u) are known.

Each of the incident waves is transformed to a com-
plete set of waves which can propagate in the media.
Eq. (12) describes the waves penetrating into the me-
dium p. The coefficients 4,, and B), are obtained
from the boundary conditions (9). Substitution of Egs.
(11) and (12) into Egs. (10) gives rise to the dispersion

equation for finding kz,(E Uj and x; (1? u)-



@. I'. bacc, JI. B. Bamosa / Tpancopmayus 601 Ha...

Ha(lgllakzlj:(); Hﬂ(ELlﬂKzl):O' (13)
As L waves propagate in both media, each equation
in Eq. (13) has L real roots k., and x, (/ is the

number of root).

On substituting Eq. (11) and Eq. (12) into
the boundary conditions (9), one can obtain the fol-
lowing results for k,, and ¥

ki = kul =Ky, = ki,

(14)
where [, [}, I,, [; are integer from 1 to L. Eq. (14)

can be consider as the Snellius law. The equations for
finding 4,, and B,, are as follows:

2L
Zsmn’ﬂm’ :gm’ (15)
m'=1

where

S _ Qam(kzm’)atmZl...L,m':l...L;
"= Qg K Jat m =1 Lm' = L+1..2L;

2L
gm = ZQam (_ kzm )AI(O)’
m=1

Am'o(la) atm'=1...L;
M = ~
B(m'—L)O(kL\J at m, =L+ 1..2L;

L
Sm = ZQam (_ K )Ar(f’)
m'=1
The solution of Eq. (15) is

1 2L
M = B ZDmm'gm’ >

m'=l

(16)

where D and D, are the determinant and cofactor

of the set of Egs. (15).
Calculation of the fields £, and E 4, results

anzexp[i(aam?;w(,z)x

x exp{— ikzl(lz)z} + a7
+ IZ::AIO(/Z )exp[ikzl(;l )z}};

v L
E gy =exp [i(r?la)] ;BIO(EJ-)X (18)

x exp[-ix (K, )z]

Note that any incident wave of one type transforms to
waves of all types. The fields of the second approxi-
mation £, and Eg describing the waves scattered
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from statistical roughness occupying the surface S,

can be found.

These fields must satisfy Eqs. (10), the radi-
ation conditions, and the boundary condition (9).
They have the form

£.()- Z [4,(5.)x

(19)
cexpliff, 7+ kG, )]

F)-3 [ 5(a.)
Eg\F :;jBll g1 J* (20)

<expli 7.7 -, (7. )= 17 .

where £ (c? L) and & (;l) are obtained from
Eq. (13) with & and &, replaced by §,.

The equations for A4; and B, are as fol-
lows

2L ~ o~ ~ o
Zsmm'nm':7m(kLaqL)g(kL_qL)a (21)
m'=1

S has the same form as for the field of zero-

approximation. The relationships between 77, and

mm'

Ay, By are the same as for 7, and A4y, By
~ L
ym(klaqj_) = Z[Q,(lel(_ KZI)B/?O -
I=1
- an)z (=520 ) Ay - an)z (121 )y ]+
~_ L
+ quj_z [Qgg (_ K, )BIO -
I=1
~0B)(- )iy~ 0B)(k. )
g(la_ - gJ_) = J'g(i)exp{i(lﬁ - i)a}di :
The solution of this set has the form
M = ‘Pmr(/i,cguj?(/i _‘i),
where
1 & T A\ (Z o~
\Pm’ :BZDm’mym(kltéJ_)g(kL _éL)
m=1

is equal to ¥, at /=1.L and to ¥ at

I=L+1..2L.
Therefore, we have

Ay = \Pa,(li,ql)g(la - qL), I=1.L;

(22)

(23)

~ - @4
Bll :\Pﬂl(kl’ql)g(kl _élj, l:L+1.2L.

As a result, we obtain
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Eal = ij\yal(lz_agl) E(;J_ _gljx
I=1

Xexp{i[gﬁ +k (gi)z]}dgL;
L ~ o~ ~ .

Eg = ijﬁl(];p‘h)g(lﬁ _‘hjx
I=1

cexplild. (g )2 Jdd .

Egs. (25) describe the fields scattered on
statistically rough surface in both half-spaces. In the
case of the far zone, the integrals in Eqs. (25) can be
calculated by the saddle-point technique. As the in-
terface of the surfaces « and £ is a stochastic func-

(25

tion of coordinates, the scattered field is stochastic.
The average fields <Ea1> and <E ﬁ1> are equal to

ZEro0.
Now the mean intensity of the scattered and

transformed fields <|Ea1|2> and <|E ﬂ1|2> in the far

zone can be calculated by way similar to made in [1].
The results are

— 2
v g,k
4728 & al(q g J_)
E > — X
leaf) =2 ald ") 26)
XE(;L_g'U);
~ = 2
o)zl
Al /= ) = ‘#ﬁ(g"ﬂ)‘ (27)

X E(EJ_ - 57”¢1 j’
where 5 ", and ; ", are the roots of the equations

szljg'u): 0K (q u)

oq'y, z aq'y,

K (éz j = _[K (E)exp{i(ng)ﬂdﬁ is the Fourier trans-
formation of the correlation function;

k()= (sl (7. + 5):

» 2, (Z A2, (F 2, (20 )V
ﬂa(‘?’l)= 0 I(;qui)a /;Z;gqi)_ 8@’2{22:)
)= <z Joedin].

9x y

o’ Kzl q i

99,09,
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The following conclusion about results ob-
tained in this article can be made. The generalized
method of small perturbations is applied to solve the
problem of wave scattering and transformation from
statistically rough surface separating media with a
spatial and time dispersion. The problem cannot be
solved by the usual small perturbation method which
can be used only for non dispersive media, described
by the Maxwell equations or by the wave equation
[1, 2]. Since the media with dispersion are described
by much more complicated equations and boundary
conditions, the generalized method has been pro-
posed.
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TPAHCOOPMALIA BOJIH .
HA CTATUCTUYECKHN HIEPOXOBATOMN
IMTOBEPXHOCTU

®. T. bacc, JI. b. Barosa

OO00O0IIeHHBIH METOA MajbIX BO3MYIICHHH HCIOJB30-
BaH JUISl MCCIICIOBAHHs TPAaHC(OPMALMU BOJIH HA CTATUCTUYECKH
LICPOXOBATOM MOBEPXHOCTH, Pa3ICISIOIIEH CPEbl, B KOTOPHIX H3-
3a HaJIM4Usl BPEMEHHOM M NPOCTPAaHCTBEHHOH AMCIIEPCHIA pacpo-
CTpPaHSIOTCS HECKOJIBKO TUMOB BOJIH. CHOpMYIHPOBaHBI UL OIS
rpaHNYHBIE YCIOBHSA. PaccunraHa CpelHsis HHTCHCHBHOCTH
TpaHCHOPMHUPOBAHHBIX BOJIH.

KiloueBble €JI0BAa: CTaTHCTUYECKHM MIEPOXOBATas
MOBEPXHOCTb, BPEMEHHAsh M I[POCTPAHCTBEHHAS HCIEPCHH,
TpaHc(opMalys BOJIH, METOJ MaJbIX BO3MYIICHMI, METOA mepe-
Basa.

TPAHCOOPMAILS XBUJIb
HA CTATUCTMYHO HIOPCTKIN ITOBEPXHI

®. T'. bacc, JI. b. BatoBa

VY3aranbHEHUH MeToJ MaluX 30ypeHb BHKOPHCTAHO
JUISL TOCHIZKeHHS TpaHcopMallii XBUIb Ha CTATUCTHYHO LIOPCT-
Kilf IOBEpXHi, IO PO3JUISLE CEPEIOBHUILA, B SKUX i3-3a HASABHOCTI
4acoBOI Ta NMPOCTOPOBOT IUCTIEPCiH PO3IMOBCIOKYIOTHCS JIEKiIbKa
TuMniB XBuIb. CHopMyIIbOBAaHO AJIs TOJIS TpaHU4HI yMOBHU. Pospa-
XOBAHO CEPEIHIO IHTeHCUBHICTh TPAaHC(HOPMOBAHUX XBUIIb.

Karo4oBi cjioBa: CTaTHUCTMYHO UHIOPCTKA IOBEPXHS,
yacoBa Ta MPOCTOPOBa JAUCIEpCii, TpaHcdopmalist XBUIb, METO]
Majux 30ypeHb, METOJI IIepeBally.
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