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Non-linear pumping effect in oscillatory diffusive processes and its 
physical consequences for the World Ocean deep layers and lakes 

 
The physical mechanism of heat transmission in oscillatory processes is described. The effect 

manifestation in the process of integral heat exchange in the World Ocean deep layers is studied with-
in the frame of a simple one-dimensional approach. The sea surface temperature (SST) has long-term 
oscillations with amplitudes greater than the trend in mean-temperature increase. The oscillations of 
SST lead to nonlinear pumping effect in oscillatory processes; heat is pumped out from or into the 
deep layers, depending on oscillation amplitudes. With increasing SST oscillation amplitudes, the 
heat comes out and deep layers are cooled, otherwise, with decreasing amplitudes, the heat spreads 
into the deep layers. 
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1. Introduction. At the moment, there is no clear explanation for the deep wa-
ters of the North Atlantic and Arctic basin getting colder. As shown in [1, 2], deep 
waters of the North Atlantic are cooler than before. The temperature at 1750 m 
depth in the North Atlantic decreased by –0.1 to –0.4°C in comparison with the 
period 1970 – 1974. Fig. 1 demonstrates heat content variations in ocean waters in 
the North Atlantic and North Pacific in the layer of 1000 – 3000 m. One can con-
clude that the deep waters became cooler in comparison with the period 1975 – 
1980. The deep-water cooling is more pronounced in the Arctic. The interannual 
variability of the deep-water heat content near the Atlantic sector of the Arctic ba-
sin is 80% due to water layer change, whereas the long-term variability is caused 
by the water temperature change, accounting for 60% [3]. As reported in [4], the 
temperature of the Arctic basin deep waters decreased by –0.03°C from 1950 to 
1978 and the maximum of the long-term water temperature decrease is –0.08°C at 
1000 m in the period of observations up to 1998; at the same time, the temperature 
of upper layers (< 400 m) increased (Fig. 2). An interesting phenomenon is associ-
ated with the coldest waters of the World Ocean. In 1898, F. Nansen discovered 
waters with temperature of –1.3°C in the northern Norwegian Sea. Later, up to 
1950, the temperature of these waters was not less than –1.1°C. However, starting 
from 1970, water temperature was quickly decreasing and in 1977 achieved a value 
of –1.2°C. In that period, the heat content of a 2 km deep layer decreased by more 
than 40 kcal/cm2. At the same time, the average temperature of the bottom waters 
in the Arctic American – Asian sub-basin also decreased. During nearly 20 years, 
bottom water temperature in the Norwegian Sea decreased by –0.3°C, the maximal 
temperature of the deep Atlantic waters, by –0.1°C, and the average temperature of 
deep waters in the American – Asian sub-basin, by –0.05°C. The decrease in the 
temperature of the Barents branch of the Atlantic waters in the Arctic, a natural 
phenomenon still to be explained, is especially pronounced at the place where this 
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branch merges with Fram's flow in the northern part of the Kara Sea. The Barents 
Current core became cooler by –0.2° to –0.4°C [5]. 

 

 
 

F i g.  1. Heat content variations of the deep water layer 1000 – 3000 m for years 1950 – 1995 in the 
North Atlantic (1) and the North Pacific (2) calculated by author from data of the paper [1] 
 

 
 
F i g.  2. Distributions of temperature in the layer 200 – 1000 m in the Arctic Ocean [4]: 1 – 4 — in 
1973 – 1976 years, 5 – in 1998 (the temperature at 1000 m decreased by about –0.08°C in 1998 in 
comparison with 1973 – 1976, but the temperature of upper layers (< 400 m) increased) 
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In the article [6] data of temperature and salinity observations in 1995 – 2004 
on the parallel 24.5°N in the North Atlantic are described. The temperature of deep 
layers below 2000 m is shown to be decreased. A widespread idea is that cold pen-
etrates into deep layers through downwelling of cooled surface waters in polar re-
gions or in zones of deep convection as, for example, in the Irminger Sea [7]. If we 
proceed from this supposition, the deep layers of the World Ocean have to be 
warmer because in polar regions, the surface waters become warmer. As one can 
see from Fig. 2, the surface layers become warmer, but deep layers become cooler. 
So, it is impossible to explain the cooling of deep layers only by water convection 
in polar regions.  Moreover, at the same time, the salinity of deep waters in the 
North Atlantic was found to increase. This does not agree with the idea of deep 
layers cooling by convection in polar regions, because ice melting leads to a de-
crease in surface salinity in the Arctic. 

A more interesting situation is observed in Lake Baikal [8]. The surface water 
temperature in 1972 – 2007 was decreasing, while the temperature of deep layers in 
the lake was increasing (Fig. 3). Obviously, this phenomenon cannot be explained 
by convection.  
 

 
F i g.  3. Averaged long-time temperature change in water layers in the South, Middle and North 
Baikal in June – September, 1972 – 2007 [8]: а – surface layer (200 – 400 m), b – bottom layer 
(200 m from bed) 
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From this, one can conclude that some other process can influence the temper-
ature of deep layers in seas and lakes. In this article, it is shown that vertical turbu-
lent diffusion of heat and salinity in oscillatory processes, the so-called pumping 
effect, can significantly influence the temperature of deep layers in seas and lakes.  

 
2. Pumping effect for nonlinear parabolic equations. Before considering 

oceans and lakes, we expound briefly the theory of pumping effect. First this effect 
was described in [9]. Authors of the paper [10] did not know about this paper and 
obtained this effect independently, giving it the name of pumping effect.  

Consider one-dimensional nonlinear thermal conductivity equation 
 

( ) ,







∂
∂

∂
∂

=
∂
∂

z
TTF

zt
T                                                 (1) 

 

where )(TF  is the thermal conductivity «coefficient» (function), t  – time, z is the 
spatial coordinate.  

We search for a periodical solution of the equation (1) on a half-line z > 0 with 
the following boundary conditions: 

 

( ) ∞<<+==
+∞→=

CTtTTtfT zz ,cos100 ω ,               (2) 
 

here ( )tf  is a periodical function with period ωπτ /2= , where ω  is a frequency 
of oscillations.  

The equation (1) with boundary conditions (2) describes many physical pro-
cesses, e.g. the propagation of long waves on shallows, fluctuations of currents in 
porous mediums, propagation of temperature waves, polytropic gas, etc. [10]. 

Introduce an operator of averaging over period τ:  
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and the function )(TΨ  as the primitive function of )(TF : 
 

∫=Ψ dTTFT )()( .                                              (4) 
 

Assume )(TΨ  is a single-valued function. Denote the inverse function to Ψ as 
)1(−Ψ . Then, the following theorem is true [10]: periodical solution of equation (1) 

with boundary conditions (2) tends at +∞→z  to a constant )(∞T : 
 

[ ]))(()1()( tfT ΨΨ= −∞ .                                        (5) 
 

Note that, in the general case, )(∞T  does not coincide with 0T . From (5) one can 
see that Ψ  is invariant along z (the proof was adduced in Appendix 1). 

Thus, pure harmonic oscillation of parameter T  at the domain's boundary leads 
to an increase or decrease in T  within the domain interior relative to the mean value 
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at the boundary. Hence we observe an effect of either «pumping in» or «pumping 
out» of the substance at infinity caused by harmonic oscillation at the boundary. 

It is easy to find the value of invariant Ψ  at infinity, because oscillations at-
tenuate there and equation (A1.4) can be used. However, in practice, such problem 
occurs frequently for limited regions and, when the problem is formulated over a 
limited segment Lz ≤≤0 , the procedure of finding the invariant considered in the 
previous section cannot be repeated at Lz = . In the general case, equation (1) in a 
segment can be solved only numerically. However, if the ratio 01 /TT=ε  in the re-
lation for )(tf  is small, i.e. 1<<ε ,  it is possible to find an analytical expression 
for the pumping effect at the other end of the segment at Lz =  (see Appendix 2). 

Equations (A2.5), (A2.6) allow estimating the distance )(+L , where the mean 
temperature approaches the asymptotic solution (A2.8) (see Appendix 2):  
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If medium function F(T) in equation (1) is a linear function TTF βα +=)(  (as, for 
example, in the case of propagation of temperature waves in water, ice, or soil), we 
have the following relation for the pumping effect at the infinity: 
 

2/2
1

2)( TbbT +±−=± ,   where 0Tb +=
β
α .                                        (7) 

 

If b < 0, one should take the minus sign in equation (7); if b > 0, the plus sign is 
taken; and if 1/1 <<bT  and 0/ T>>βα , equation (7) is simplified and reduced to 
equation (A2.8). 
 

2.1. Numerical confirmation of the pumping effect. Consider the numerical 
model experiment to demonstrate the manifestation of pumping effect. Take func-
tion )(TF  in equation (1) in dimensionless form 

 

( ) ( ),TrbacTF +=                                          (8) 
 

where parameters are equal ,1,25.2,10 === bac  596.0=r . Note that the 
presentation of function )(TF  in the form (8) is associated with the application of 
pumping effect to the ocean discussed in section 3 below. In the numerical calcula-
tions at the surface (z = 0), a periodic boundary condition ( ) )5/2sin(1 ttqT π+=  is 
applied, t  – is nondimensional parameter, the heat flux at the domain bottom 
(z = 5) is zero. We define the function )(tq  as follows: it is 0.2 at 2000 << t  (the 
first regime); it linearly changes from 0.2 to 0.4 at 250200 << t ; and it is 0.4 at 

500250 << t  (the second regime). Using the function )(tq , we simulate a situation 
when the temperature at the ocean surface fluctuates with fixed amplitude up to a 
predefined time cutoff. After that, the fluctuation amplitude increases by a factor of 
two. As a result, the temperature in the lower part of the ocean (curve 4 in Fig. 4) 
reaches an asymptotic level corresponding to the first regime (level 1), and later, 
when the fluctuation amplitude increases, the temperature reaches another asymp-
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totic level, corresponding to the second regime, denoted as level 2. The heat loss is 
determined by the difference between levels 1 and 2 (interval 3). 

 
 

F i g.  4.  Behaviour of the temperature 0/TT  in time t (nondimensional) at the bottom of a model 
basin in the numerical experiment (see the text for explanations of 1 – 4 in section 2.1) 

 
One may easily reach a general conclusion from physical considerations that 

the pumping effect is positive when )(TF  in (1) is an increasing function and neg-
ative when it is a decreasing function as, for example, the function (8). Indeed, the 
value in square brackets in equation (1) is heat flux. When the temperature at the 
boundary periodically changes and the function )(TF  increases during the phase 
of greater temperatures, the heat flux into the domain is greater than the flux out of 
it during the phase of temperature decrease. As a result, the net heat flux over the 
period is directed into the domain, leading to a positive pumping effect. Similar 
physical considerations for a decreasing function )(TF lead to a negative effect of 
the heat exchange. 

 
3. One-dimensional model for the World Ocean. The temperature T and the 

salinity S of the World Ocean averaged over the latitude and longitude were de-
scribed by the following system of one-dimensional equations of nonlinear heat 
conductivity and salinity diffusion in the vertical direction: 
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where TK  and SK  are coefficients of thermal conductivity and salinity diffusion, 
respectively, z is the vertical coordinate. At the ocean surface the temperature and 
salinity oscillate periodically near their mean values 
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   (10) 
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+∞→= 2100 ),(cos CStSSS zz ω . 
 

As known, ocean thermal conductivity and salinity diffusion are governed by the 
processes of turbulent mixing. Since processes of thermal conductivity and salinity 
diffusion were realized by turbulence, then it is reasonable to assume 

UST KKK ~~ , where UK  is the coefficient of vertical momentum exchange. Be-
low the surface of the Ekman layer, the parameterization of UK , generally accept-
ed in oceanology [11 – 13], can be written as a function of the Brünt – Váisálá fre-

quency 
z

gzN
∂
∂

=
ρ

ρ0
)(  as  

 

( ) ,γµ −= NzKU                                                    (11) 
 

where ( ) ;5.15.0;scm102...1; 2231
0 ≤≤×≈= −− γδδµ γN  g – the acceleration of 

gravity, ρ – water density, 0ρ  is a mean value of ρ , and 0N  is the characteristic 
value of the Brünt – Váisálá frequency. As reported in [11], the most acceptable 
value is .1=γ  With weak stratification of the ocean deep layer, the value of ( )zN  
can be very small; as a result, the relation (11) overestimates the values of UK . To 
avoid that, in [12] the modification of relation (31) was suggested by introducing 
an upper limit max

UU KK ≤ . Then the equation (11) reads: 
 

( ) ( )max,min UU KNzK γµ −= .                                    (12) 
 

With the assumption max
UU KK ≤ , the relation (12) is valid over the entire oceanic 

water column. To apply directly the theory of pumping effect given in section 2, we 
have to express UK  as a function of not density gradient, but the density itself, i.e. in 
the form )(ρKKU = . For this purpose we use a hyperbolic law for the Brünt – 
Váisálá frequency below the Ekman layer in a geostrophic domain, obtained in [14], 
 

( ) ,
E

EE
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where Eh  is the upper Ekman layer thickness and EN  is the value of Brünt – 
Váisálá frequency at the lower boundary of the Ekman layer. Note that the expo-
nential Emery – Lee – Magaard approximation [15] or the exponential Munk – 
Wunsch approximation for a coefficient of a thermal conductivity [16] could be 
used instead of the hyperbolic approximation of Brünt – Váisálá frequency (13). 
However, comparison has shown the parameterization (13) to be in better agree-
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ment with the real distribution of Brünt – Váisálá frequency in the ocean. Moreo-
ver, the relationship (13) is preferable from the mathematical viewpoint. 

So, taking into account (13), we can write 
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A standard approximation for the Brünt – Váisálá frequency was made in (14) by 
substituting the mean value of 0ρ  instead of the density ρ  in the denominator. 
Integrating (14) from the bottom Hz =  to the level z, we find  
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where H  is the ocean bottom. Substituting )/( EEE hzNh +  from (15) in (13) and 
then in (11), we obtain 
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We take the equation of the seawater state in the simple linear approximation as 
( )[ ],)(1 HSHTH SSTT −+−−= βαρρ  where Tα  is a coefficient of thermal expan-

sion of water, Sβ  is a coefficient of salinity compression, ( ),HH ρρ =  ( )HTTH = , 
( )HSSH = . Multiplying  the first equation of system (9) by Tα− , and the second 

equation by Sβ  and adding them, we obtain the equation for the density ),( ztρ : 
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where 
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Sc is the Schmidt number, i.e. the ratio of the characteristic values of the coeffi-
cient of turbulent thermal conductivity to the kinematic coefficient of turbulent 
momentum exchange.  

Substituting (10) into the equation of seawater state, we obtain boundary con-
ditions for water density at ocean surface  
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where 
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In the case of a lake, 0=Sβ  and we have the equation for the thermal conduc-
tivity 
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3.1. Homogeneous ocean. First, consider a case of a homogeneous ocean 
( ) .0ρρ =z  But the water density at the surface varies periodically 

tωρρρ cos10 +=  near a value 0ρ . The lower boundary of the surface Ekman lay-
er (i.e. beginning of the geostrophic domain) is assumed to coincide with the ocean 
surface. The relation (12) allows us to avoid singularity in (17) for the real ocean, 
so we can consider .0>− ρRB  An antiderivative function for )(ρK  in (17) for 

1≠γ  is the function 
( ) ( )

,
1 1−−−

− γργ RBR
A  and for 1=γ  the function 

)(ln)( ρRBRA −− . At 1=γ  we get the following expression for the value of the 
pumping effect: 
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Thus, one can see from (23) that if 1=γ  the pumping effect is positive. Calcula-
tions for 2/1=γ  and 2=γ  give the positive pumping effect for the density too. 
So, increasing amplitude of surface density oscillations leads to an increase in wa-
ter density in the World Ocean deep layers. 

If we assume const)( =zS  then for the temperature we obtain the equation 
(21) with decreasing function )(TF . Therefore the pumping effect for temperature 
is negative. Similarly, one can find that the pumping effect for salinity is positive. 
So, the positive pumping effect for density corresponds to negative pumping effect 
for temperature and positive pumping effect for salinity.  

Further we will consider the pumping effect for temperature alone. For the 
thermally homogeneous ocean ( ) 0TzT =  with periodic variability of water tem-
perature at the surface tTTT ωcos10 +=  with 1=γ , we get the following expres-
sion for the value of pumping effect 
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So, for 1=γ  the pumping effect is negative for temperature and its value is two 
times smaller than for 2=γ . Finally, we can find an expression for the pumping 
effect for the other extreme case with 2/1=γ  (Appendix 3). Thus, for all values γ  
the pumping effect for temperature in the World Ocean is negative.  
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The layer, where the temperature oscillations are observed and after it the tem-
perature almost reaches the pumping value ( )±T , is  
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This is the Stokes layer thickness. Assuming the Schmidt number 1Sс ≈ , we get 
337 s/m102 −×≈A . From (25) one can obtain that Stokes layer thickness is about 

83 m for oscillations with a period of one year and about 187 m for a period of five 
years. These estimates show that the thickness of Stokes layer, below which the 
temperature reaches the asymptotic level, is much less than the total thickness of 
the ocean; therefore, the approximation of an infinitely deep ocean is quite applica-
ble to evaluating the pumping effect. 
 

3.2. Effect of temperature decrease (increase) in the deep layers. As we see, 
the pumping effect in the World Ocean is negative for temperature for all admissi-
ble values of γ , while for density and salinity, it is positive. In addition, the value 
does not depend on ;A  hence, it does not depend on the Schmidt number Sc. Thus, 
when the amplitude of temperature fluctuations at  surface 1T  increases, the tem-
perature in the depths of the ocean decreases, that is, the heat is pumped out from 
the depths, and inversely, when the temperature fluctuations amplitude 1T  decreas-
es as compared to the previous time period, the temperature in the ocean depths 
increases, i.e. heat spreads toward deeper layers. The result of the numerical model 
experiment shown in Fig. 4 illustrates this conclusion.   

To estimate the amplitude increase of long-term fluctuations in the mean sur-
face temperature of the World Ocean, we use the results of [17]. Following Reid, 
the relation for the globally averaged surface temperature of the World Ocean sT  
and envelope curve of the solar activity fluctuations (Wolf number WN ) becomes 

 

( )
,

4
1089.0

0s Q
NTT Wα−

+=                                           (26) 

 

where )Cm/(W2.2 2 °⋅=Q  and 3.0=α  is the total albedo of the Earth. Analysis 
of fluctuations of the Solar activity (Wolf numbers) shows that, starting from 1925 
– 1930, the solar activity amplitude fluctuation has been increasing. This is the up-
going phase of the 80 – 90 yrs Gleissberg period. The maximal value of the enve-
lope curve of Wolf numbers during period 1900 – 1950 is 90 in average, while the 
same maximal value over 1950 – 2000 is about 190. Thus, the difference consti-
tutes about 100. We suppose that the increase in long-term temperature fluctuations 
at the surface of the World Ocean is proportional to the increase in globally aver-
aged surface temperature. 

Substituting this value in (26), we get an estimate of the swing amplitude in-
crease of long-term temperature fluctuations at the ocean surface °≈∆ 7.0sT C. 
The amplitudes of the temperature fluctuations at the ocean surface for these peri-
ods are equal to half of the value assessed. 
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Another estimate of fluctuations of the mean surface temperature of the World 
Ocean can be derived from observational data. SST fluctuations in the equatorial 
zone of the Atlantic from 1950 is shown in Fig. 5 [18]. The graph is based on data 
of instrumental observations involving satellite imaginary. The amplitude increase 
of long-term SST fluctuations from 1960 is clearly seen in Fig. 5. By 2000, this 
increase reaches 1.5°C, i.e. it is two times greater than the estimate obtained from 
(26). So, an integral estimate of °≈∆ 7.0sT C seems reasonable. Moreover, Fig. 5 
confirms the hypothesis that the long oscillation amplitude of the ocean surface 
temperature in 1950 – 2000 yrs increases by a factor of 1.5. We estimate the tem-
perature decrease in the deep layers in case of a homogeneous ocean when the am-
plitude of long-term temperature fluctuations at surface exceeds °≈ 35.01T C. 

 

 
 
F i g.  5. Long-term temperature fluctuations T at the ocean surface in the equatorial zone of the At-
lantic at the point ( °° 0;S10 ) [18] (the value of minTTT −=∆  is plotted along the vertical axis, where 

minT  is the minimal temperature at the given point): 1 – data of observations; 2 – nonlinear trend from 
the paper [18] 

 
Let us evaluate some applied parameter values. In the World Ocean, 

,km5,s10,m100 12 ≈≈≈ −− HNh EE  and ( ) .C1067.1 14 −− °×=Tα  We assume the 
bottom temperature for the Pacific to be °≈ 08.2HT C. Then, we get 

23 sm1027.3~ −×−≈B  and ( )Cs /m1067.1~ 23 °⋅×≈ −R . If we also assume that the 
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mean deep water temperature in the Pacific, °≈ 66.30T C [19], is the mean-deep 
water temperature in the World Ocean, we get: .sm108.2~~ 23

0
−×≈+ TRB  

Using relation (A3.1) in case of ,2=γ  we get the following estimate for the 
temperature decrease in the deep ocean layers: ( ) °×−=∆ −−

∞ (106.3 2T C). Now we 
calculate the heat losses of the deep ocean layers over the period of climate warm-
ing. The estimated volume of the Pacific is 6101.707 × km3 the temperature de-
crease is °036.0 C. The water thermal capacity is ( )Cgcal928.0 °⋅ . These values 
correspond to the heat of 2221 104.2036.0928.0101.707 ×=××× cal transported 
from the depths of the Pacific. 

Since the volume of the Pacific is approximately 50% of the World Ocean, our 
estimate was doubled. Thus, over the period of climate warming, the heat loss of 
the World Ocean deep layers owing to the pumping effect at 2=γ  is about 

22108.4 × cal or 23100.2 × J. Taking into account the heat transportation from the 
ocean during a period of 50 – 70 years and that the Earth's surface area is 

14105× m2, we obtain the specific heat flux of 25.018.0 −≈ W/m2. This value is 
more than two times greater than the geothermal heat flux from the Earth's interior 
(0.09 W/m2). 

If 1=γ the relation (24) reads: ( ) )С(109.1 2 °×−=∆ −−
∞T . This is two times less 

than in the case of 2=γ , thus, in this case, all estimates obtained above have to be 
halved. In case of  2/1=γ , calculations from the relation (A3.4) lead to 

( ) )С(109 3 °×−=∆ −−
∞T . 
 
4. Thermally non-homogeneous ocean. Estimates of the heat loss given 

above were made for a thermally homogeneous ocean. Such state corresponds to 
one of stationary solutions of equation (1), where the thermal conductivity coeffi-
cient is in the form (22) and the vertical heat flux is zero. If we admit that the heat 
flux is not zero, we can obtain a steady-state solution. For the case of 1=γ  in (21), 
we obtain a time-independent solution of equation (21): 
 

( ) [ ])~~exp(~~
~
1

21 zRCCB
R

zT +−= ,                                   (27) 
 

where 

,~~
~~

ln~
1~,~~~

s
2s1 BTR

BTR
HR

CBTRC H

+
+

=+=                            (28) 

 

sT  is the surface water temperature, HT  is its bottom temperature, and H is the 
depth of the fluid. 

The solution (27), (28) describes a stationary exponential temperature distribu-
tion over ocean depth with surface temperature sT  and bottom temperature HT . 
Fig. 6 gives a numerical solution of equation (1) with thermal conductivity function 
(22) at 1=γ . The stationary solution (27) with °=10sT C and °= 08.2HT C is tak-
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en as the initial condition. On the ocean surface, the boundary condition 
tztT z ωsin7.010),( 0 +=

=
 with fluctuation period of 1/2 =ωπ  year is used. The 

function of thermal conductivity has the form of (22) with 31027.3~ −×−=B m/s2, 
31067.1~ −×=R m/(s2·°C). Since coefficient A has no influence on the magnitude of 

the pumping effect and determines only the Stokes layer thickness, in these calcu-
lations we assumed 3104~ −×=A m3/s3. The amplitude of temperature fluctuations 
on the ocean surface was 0.7 according to Fig. 5. As one can see in Fig. 6, after the 
start of periodic variations in ocean surface temperature, the temperature in any 
point of water column goes down to low values. In accordance with this calcula-
tions, the temperature drop at the depth of 2000 m is 3105.2 −× (°C).  

 

 
 
F i g.  6.  Temperature drop at the depth 2000 m relative to the stationary solution (equation (19)) 
after the start of the annual oscillation of ocean surface temperature (numerical solution) 

 
Now let us consider the case of Lake Baikal. In Fig. 3 long-term changes of 

temperature of surface and bottom layers in Baikal are shown. From Fig. 3, а it can 
be seen, that the average temperature of surface layers of the lake over period 1972 
– 2007 decreased, i.e. surface waters were cooled. At the same time, the tempera-
ture of bottom water layers rose (Fig. 3, b). It is impossible to explain the rise of 
bottom water temperature by the convection process. The only explanation that can 
be offered for this phenomenon is based on the pumping effect. Indeed, as can be 
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seen from Fig. 3, а, the amplitude of long-term fluctuations of surface water tem-
perature in period 1972 – 2007 almost halved. Under the pumping effect theory, a 
decrease in the  amplitude of surface water temperature fluctuations in the lake will 
lead to pumping in of heat in deep layers, i.e. to an increase in the temperature of 
deep waters.  

 
5. Conclusions. The estimates obtained in this study show that the pumping 

effect can serve as a strong nonlinear mechanism in processes of heat flux redistri-
bution on the Earth. As follows from the results described above, a part of the heat 
that warmed the atmosphere during the periods of climate warming is transported 
from the deep layers of the ocean. According to different estimates, the magnitude 
of greenhouse effect is equal to the increase in additional heat flux to the Earth sur-
face from 0.35 to 4 – 5 W/m2. The additional heat flux from the deep layers of the 
World Ocean as a result of the pumping effect is estimated at about 0.18 – 
0.25 W/m2. It is comparable with the lower value of the flux caused by greenhouse 
effect. If we assume even higher values of SST long-term fluctuations [18], the 
estimates of the pumping effect magnitude become higher also.  

Thus, the deep layers of the ocean serve as heat storage (accumulator) of the 
Earth when the amplitude of long-term temperature fluctuations at the ocean sur-
face increases. This situation is observed during the past 50 years. Due to the nega-
tive pumping effect for temperature in the ocean, the heat is pumped up from the 
deep ocean to the atmosphere; on the contrary, during period of SST amplitude 
decrease, heat penetrates into the deep layers. A hypothesis explains the increase in 
SST fluctuations amplitude by the existence of solar activity envelope curve [20]. 
With this hypothesis, one can explain the appearance of 1950 – 1970 cooling peri-
od [21]. During this period, the solar activity decreased. Following to pumping ef-
fect theory, a decrease in SST fluctuations amplitude leads to pumping-down of 
heat from ocean surface to the deep ocean during the period of 1950 – 1970 and, 
consequently, to a slight climate cooling. 

As a result, the nonlinear pumping effect is a cause of heat exchange between 
the ocean and the atmosphere. In climate-warming period, the amplitude of SST os-
cillations increases, causing cooling of the deep layers. This idea was discussed in 
paper [22]. Our estimates show that, for the Earth climate warming period, the deep 
layers of the World Ocean may become cooler by (0.9 – 3.6) × 10-2 (°C). Other mani-
festations of pumping effect in geophysics were considered in the work [23]. 

Lake Baikal demonstrates another manifestation of the pumping effect. During 
the period 1972 – 2007, the amplitude of long-time oscillations of surface tempera-
ture decreased and the temperature of deep layers in the lake increased as it should 
be according the pumping effect theory. 
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Appendix 1 
 

Taking into account equation (4), we can rewrite equation (1) as 

2

2
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zt
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




∂
∂Ψ

∂
∂
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∂
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Averaging the left- and right-hand parts of equation (A1.1) over period τ  yields  
 

02

2

=
Ψ

zd
d

                                               (A1.2) 

 

and, consequently, 21 CzC +=Ψ . Since Ψ  is nothing but heat flux averaged 
over the period, Ψ  cannot grow infinitely at +∞→z , therefore 01 =C . It fol-
lows from this that 2C=Ψ and Ψ  is an invariant independent of z . As a re-
sult, we get 
 

+∞→=
Ψ=Ψ zz 0

.                                          (A1.3) 
 

At +∞→z , oscillations attenuate and we have at infinity  
 

)( )(∞
+∞→

Ψ=Ψ Tz .                                         (A1.4) 
 

Taking into account that 
 

))((
0

tf
z

Ψ=Ψ
=

                                        (A1.5) 
 

and using the inverse function )1(−Ψ  to Ψ in (A1.4), we obtain relation (5) from 
(A1.3) and (A1.5).  

 
Appendix 2 

 

Consider equation (1) with boundary conditions (2) and an expansion of F(T) into a 
series to the terms of the first order with respect to ε : 
 








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∂

++
∂
∂

=
∂
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z
TOT

zt
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where 
dT

TdFTF )(,)( 0
0 == βα . At the right end of the segment, we specify the 

boundary condition of the second kind 
 

0=
∂
∂

=Lzz
T

,                                              (A2.2) 

 

which physically corresponds to the condition of zero thermal flux. We search for 
the solution of equation (A2.1) in the form of asymptotic expansion 

...)1()0( ++= TTT ε  with respect to ε  with boundary conditions 
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We search for the solution for the first approximation )0(T  as 
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ω
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== ,                   (A2.4) 
 

where Real denotes the real part and the asterisk denotes complex conjugated 
function. Substituting (A2.4) into the first approximation of equation (A2.1), we 
obtain the solution for )(zQ : 
 

)cosh(
)](cosh[)( 1 L

zLTzQ
λ

λ −
= ,                                      (A2.5) 

 

where )2/()1( αωλ i+= . Substituting (A2.5) into (A2.4) and then into the second 

approximation of equation (A2.1) with respect to ε , we obtain a solution for )1(T , 
containing a periodical part and a time-independent additive, which describes the 
pumping effect: 

[ ])0()0()()(
4

)( **)( QQzQzQzT −−=±
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β .                    (A2.6) 

 

Equation (A2.6) gives a quantitative value of the pumping effect at point z. At the 
end of segment Lz = , the pumping effect will be  
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At ∞→L , we get 

α
β
4

)(
2

1)( TT =∞± .                                         (A2.8) 
 

As can be seen from (A2.8), the sign of pumping effect depends on the sign of 
αβ / . 

 
Appendix 3 

 

In the case of 2=γ  we get the expression for pumping effect 
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If we represent ∞T  as ( )±
∞∞ += TTT 0 , then, using (A3.1), we can write with the 

condition ( ) 1~~~
01 <<+ TRBTR : 
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The case 2/1=γ  is the most labor-intensive for numerical calculations. In this case, an 

antiderivative function is the function .~~
~
~2 TRB

R
A

+  We get the following expression: 
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where ( ) ( )01
2 ~~~,112 TRBTRaaak +=<+=  and ( )kE  is a full elliptic integral of 

the second type. 
Raising the elliptic integral ( )kE  to the second power and leaving only the 

terms up to the fourth order of magnitude respectively to ,k  we get: 
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АНОТАЦІЯ Описаний фізичний механізм передачі тепла в ході коливальних процесів. У 
рамках простої одновимірної моделі демонструється прояв цього ефекту в процесі інтеграль-
ного теплообміну в глибинних шарах Світового океану. Спостерігаються довготривалі колива-
ння температури поверхні моря, амплітуда яких перевищує тренд при зростанні середньої 
температури. Коливання поверхневої температури унаслідок нелінійності призводять до ефек-
ту накачування: тепло викачується з глибинних шарів або поступає в них залежно від амплітуд 
коливань. Із збільшенням амплітуди коливань температури поверхні моря тепло виходить з 
глибинних шарів і вони остуджуються, а при зменшенні амплітуди тепло розповсюджується в 
глибинні шари. 

Ключові слова: ефект накачування, передача тепла в коливальних процесах, температура 
поверхні моря, одновимірна модель, глибинні шари Світового океану. 

 
АННОТАЦИЯ Описан физический механизм передачи тепла в ходе колебательных процессов. 
В рамках простой одномерной модели демонстрируется проявление этого эффекта в процессе 
интегрального теплообмена в глубинных слоях Мирового океана. Наблюдаются долговремен-
ные колебания температуры поверхности моря, амплитуда которых превышает тренд при 
возрастании средней температуры. Колебания поверхностной температуры вследствие нели-
нейности приводят к эффекту накачки: тепло выкачивается из глубинных слоев или поступает 
в них в зависимости от амплитуд колебаний. С увеличением амплитуды колебаний темпе-
ратуры поверхности моря тепло выходит из глубинных слоев и они остужаются, а при 
уменьшении амплитуды тепло распространяется в глубинные слои. 

Ключевые слова: эффект накачки, передача тепла в колебательных процессах, температу-
ра поверхности моря, одномерная модель, глубинные слои Мирового океана. 
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