Сварка за рубежом

ПРИСАДОЧНЫЕ ПРУТКИ «COBELCO WELDING» ДЛЯ ВЫПОЛНЕНИЯ КОРНЕВЫХ ПРОХОДОВ В СОЕДИНЕНИЯХ НЕРЖАВЕЮЩИХ СТАЛЕЙ БЕЗ ЗАЩИТЫ ОБРАТНОЙ СТОРОНЫ ШВА*

PREMIARC[™] TG-X308L AWS A5.22 R308LT1-5 PREMIARC[™] TG-X309L AWS A5.22 R309LT1-5 PREMIARC™ TG-X316L AWS A5.22 R316LT1-5 PREMIARC™ TG-X347 AWS A5.22 R347T1-5

Порошковые присадочные прутки серии TG-X из нержавеющей стали позволяют исключить продувку газом для защиты обратной стороны корневого шва при односторонней сварке труб способом ТИГ, что обеспечивает сокращение расходов на защитные газы и время простоя на обдув газом, включая время установки оборудования для продувки. Типичным примером применения прутков TG-X308L, TG-X316L, TG-X347 и TG-X309L является выполнение корневых проходов в соединениях технологических трубопроводов из сталей типа 304, 316 и 347, а также из разнородных металлов.

Исключение защиты обратной стороны корня шва

В случае использования обычных присадочных прутков сплошного сечения при сварке труб из нержавеющей стали необходима защита обратной стороны шва, иначе выполнение корневого прохода не обеспечит соответствующее проплавление с обратной стороны соединения. Это объясняется значительным окислением металла корневого прохода вследствие высокого содержания в нем хрома. Таким образом, защита обратной стороны шва инертным газом является обязательной операцией.

В отличие от обычных проволок сплошного сечения в трубчатой оболочке из нержавеющей стали присадочных прутков TG-X содержится особый флюсовый наполнитель (рис. 1). Под воздействием тепла дуги флюс плавится и превращается в жидкий шлак, который свободно течет к обратной стороне корня шва и равномерно покрывает проплавляющий валик, который формируется внутри трубы. Жидкий шлак защищает расплавленный металл шва и горячий металл валика от вредного воздействия азота и кислорода, содержащихся в атмосфере.

При охлаждении металла шва шлак затвердевает и превращается в тонкую и хрупкую шлаковую корку, которую можно легко удалить, если слегка постучать по лицевой поверхности соединения пневматическим молотком. При этом обеспечивается качественное формирование валика без окисления с гладкой и равномерной волнистостью на лицевой и обратной поверхностях корневого прохода шва (рис. 2). Присадочные прутки TG-X обеспечивают равномерное пропараметру кольцевого 2 — флюс

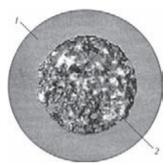


Рис. 1. Порошковый присадочный пруток TG-X в разрезе: 1 плавление по всему оболочка из нержавеющей стали;

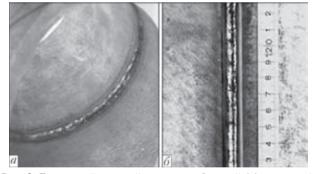


Рис. 2. Блестящий гладкий валик на обратной (а) и лицевой (б) поверхности корневого шва (сталь 304, пруток TG-X308L)

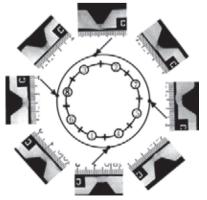


Рис. 3. Макрошлифы корневых проходов швов (положение 5G, сталь 304, труба Ду150×12, пруток TG-X308L; стрелками показаны прихватки)

^{*} Статья на правах рекламы.

ях сварки (рис. 3).

Сокращение расходов на продувку газом и защиту обратной стороны шва

При использовании обычных присадочных прутков сплошного сечения необходима защита обратной стороны шва инертным газом: обычно для этого используют аргон. Хотя длительность продувки внутренней полости трубы и количество необходимого для этого инертного газа изменяются в зависимости от внутреннего диаметра и длины продуваемой трубы, они существенно воздействуют на общую стоимость сварочных работ. В табл. 1 приведено сравнение традиционных присадочных прутков сплошного сечения и присадочных прутков TG-X в отношении факторов, влияющих на стоимость сварочных операций при выполнении корнево-

го шва на трубе внутренним диаметром 305 мм. Очевидно, что применение присадочного прутка TG-X позволяет сократить трудоемкость (в человеко-часах) на 23...74 % и общий расход аргона на 55...91 % по сравнению с обычными присадочными прутками сплошного сечения. В то же время при использовании присадочных прутков TG-X их расход несколько больше; потребляемая мощность несколько выше вследствие немного более низкой производительности наплавки (приблизительно 90 %) по сравнению с применением прутков сплошного сечения.

Кроме того, единичная цена присадочных прутков TG-X выше, чем цена прутков сплошного сечения. Однако расчеты с учетом единичной цены для каждого фактора показывают, что прутки серии TG-X обеспечивают значительную экономию с точки зрения общей стоимости сварочных работ.

Химические и микроскопические свойства корневых швов

Химический состав металла корневых швов при использовании отдельных присадочных прутков TG-X приведен в табл. 2. Как видно из таблицы, все прутки TG-X обеспечивают низкое содержание азота в металле корневого шва. Электронно-зондовый микроанализ зоны вблизи обратной поверхности шва подтвердил отсутствие микроскопической конденсации азота. Более того, анализ микроструктуры показал, что выделения феррита равномерно распределены в аустенитной

шва трубы во всех положени- Таблица 1. Сравнение видов присадочных прутков в отношении трудоемкости (в человеко-часах), расхода аргона, прутков и потребляемой мощности при заварке корневого шва на трубе

Присадочные прутки	TG-X	Прутки сплошного сечения	
Разделка кромок	3 → 1	70°	
Длина трубы при защите обратной стороны шва	Без защиты обратной стороны шва	300 мм для локальной защиты	6000 мм для полной защиты
Время предварительной продувки ¹ , мин	Не требуется	5,2	104
Время установки защитных устройств, мин	Не требуется	10	Не требуется
Время сварки ² , мин	35	30	30
Относительное время горения дуги, %	50	50	50
Общее количество человеко-часов, мин	35	45	134
Общий расход присадочных прутков, г	120	100	100
Расход газа на предварительную продувку ¹ , л	Не требуется	122,2	2444
сварку ²	263	255	225
защиту обратной стороны шва ³	Не требуется	240	240
Общий расход аргона, л	263	587	2909
Общая потребляемая мощность, кВт/ч	0,405	0,358	0,358

¹ Параметры предварительного продува даны согласно AWS D10.11-7X (руководство по заварке корня шва и продувке газом).

матрице по всему металлу корневого шва. Низкое содержание азота вместе с указанной выше гладкой и блестящей поверхностью валика шва свидетельствует об эффективности защитного действия шлака, образующегося при использовании присадочных прутков TG-X.

Таблица 2. Типичный химический состав (мас. %) металла корневого шва в соединении, полученном в нижнем положении односторонней сваркой с V-образной подготовкой кромок и с применением присадочных прутков TG-X \varnothing 2,2 мм (I_{cr} = 105 A, прямая полярность)

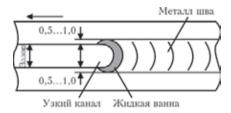
	В	_		
Присадочный пруток для шва ¹ , мин	TG-X308L	TG-X316L	TG-X309L	TG-X347
Тип/толщина основного металла, мм	304/9	316L/9	316/19	321/20
С	0,040	0,018	0,047	0,028
Si	0,55	0,64	0,56	0,65
Mn	1,11	1,48	1,36	1,78
Ni	9,72	12,34	9,99	10,35
Cr	18,89	18,93	19,47	18,67
Mo	_	2,17	0,35	_
Nb	_			0,44
Ti	_	_	_	0,07
N	0,044	0,041	0,038	0,044
FS, FN ²	4,65,7	7,17,6	6,98,5	4,46,2
SD, F%	7	7,5	7	6
DD, FN	5,5	8	8	5
In v		15	_	

¹Защитный газ горелки – аргон (без защиты обратной стороны

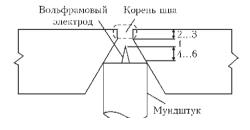
 $^{^2}$ Расход защитного газа для сварки составляет 15 л/мин при $I_{_{\rm CB}}$ = 100 A, $U_{_{\rm J}}$ = 13 B.

 $^{^{3}}$ Расход защитного газа для защиты обратной стороны шва составляет 8 л/мин.

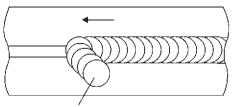
²FS – содержание феррита; SD – диаграмма Шеффлера; DD – диаграмма Делонга.


ПРОИЗВОДСТВЕННЫЙ РАЗДЕЛ

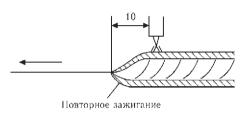
Особенности применения присадочных прутков TG-X

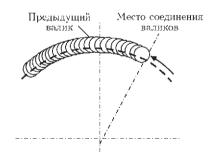

1. Обеспечение рекомендуемой разделки в корне шва для формирования качественного проплавляющего валика.

Разделка кромок			70° G → 11,0
Толщина пластины T , мм	4	6	10
Притупление G , мм	2,0	2,5	3,0


2. Применение соответствующей техники выполнения узкого канала для обеспечения затекания жидкого шлака к обратной стороне корня шва.

- 3. Повышенная скорость и контроль подачи проволоки по сравнению с применением присадочных прутков сплошного сечения для обеспечения необходимого расплавления прутка и формирования качественного проплавляющего валика, а также для компенсации несколько более низкой производительности наплавки при использовании присадочных прутков TG-X.
- 4. Выбор соответствующего тока сварки для обеспечения равномерного расплавления и проплавления. Для разных толщин пластины 3...5, 6...9 и 10 мм сила тока составляет соответственно 80...90, 90...105 и 90...110 А.
- 5. Применение короткой дуги для формирования стабильного кратера и обеспечения равномерного течения шлака путем поддержания контакта между горелкой и поверхностями кромки в разделке, а также соответствующего вылета вольфрамового электрода.


6. Соответствующая обработка кратера с обеспечением его поворота на поверхность раз-


Вывод кратера

делки для предотвращения образования трещин и усадочных раковин в кратере, включающая изменение режима сварки.

7. Обеспечение соответствующего соединения валиков для формирования равномерного проплавляющего валика и предотвращения его окисления путем удержания твердого шлака на кратере и с обратной стороны валика при повторном за-

жигании дуги для обеспечения соединения с предыдущим валиком. Точка повторного зажигания дуги должна быть расположена за краем кратера на расстоянии приблизительно 10 мм от него. При сварке в положении 5G завершение следующего валика на кратере предыдущего должно выполняться в положении снизу вверх для контроля жидкого шлака и, следовательно, обеспечения формирования узкого канала проплавления.

8. Присадочные прутки ТG-X подходят только для заварки корня шва. Они обеспечивают образование достаточного количества шлака для покрытия обеих поверхностей валика в корневом проходе как с лицевой, так и с обратной стороны. Если присадочные прутки ТG-X используют для заполняющих проходов, весь шлак может быть израсходован на покрытие лицевой поверхности валика, что вызовет образование шлаковых включений в металле шва и несплавления.

ООО Торговый Дом «НИСА» тел. 38044-242-21-83, 38067-548-76-00 www.nisa.net.ua http://линкольнэлектрик.net/

