

SCHWEISS-& PRUEFTECHNIK (Австрия) 2005. — N = 4 (нем. яз.)

Gerlach K.-H., Wasle G. Полностью механизированное производство сосудов из алюминия для грузовых транспортных средств, с. 51–55.

Новые достижения в сварке алюминия, с. 55.

Высокая производительность — процесс сварки в четырехкомпонентном защитном газе (Т.І.М.Е.) с оцифровкой параметров повышает производительность при работе вручную, с. 56.

Новые виды компактных шлифовальных машин мощностью менее 4 кВт, с. 57.

Nova — новая компактная машина для проявления рентгеновских пленок в промышленности, с. 58.

SCHWEISS-& PRUEFTECHNIK (Австрия) 2005. — N 5 (нем. яз.)

Trieb F. Резка водяной струей — состояние техники и инновационное применение, с. 67–70.

Мелкие партии, короткое время производства, высокая эффективность, с. 71.

Роботизированная сварка МАГ CrNi-стали с помощью защитного газа CRONIGON He 50 — повышение производительности благодаря оптимальному применению защитного газа, с. 72.

PHOENIX RC — оптимальная автоматическая система МИГ/МАГ сварки, с. 73.

Роботизированная ячейка для сварки мелких массовых деталей, с. 74.

Крупная роботизированная установка для производства строительных машин в Бельгии, с. 75.

Свежий ветер в области робототехники, с. 76-77.

Huppertz P. H. Мюнхен: сварка в аппарато- и сосудостроении, февраль 2005 г. — передача знаний, с. 77–78.

SCHWEISS-& PRUEFTECHNIK (Австрия) 2005. — № 6 (нем. яз.)

Friedlbinder L. Применение сварочных роботов в изготовлении рельсового подвижного состава с точки зрения пользователя, с. 85–86.

Новый ультразвуковой нот-бук для пользования в производственных условиях, с. 90.

SCHWEISSEN und SCHNEIDEN (Германия) 2005. — № 3 (нем. яз.)

Рост поступления заказов на промышленные роботы, с. 62–63.

Hartman G. F. Больше сварочных машин для азиатского рынка, с. 63–64.

Международная конференция ITSC по термическому напылению в мае 2005 г. в Базеле, с. 63.

Kosterman H. Год со дня основания координационного комитета по сварочной технике в области надземных сооружений, с. 64–65.

^{*} Раздел подготовлен сотрудниками научной библиотеки ИЭС им. Е. О. Патона. Более полно библиография представлена в Сигнальной информации (СИ) «Сварка и родственные технологии», издаваемой в ИЭС и распространяемой по заявкам (заказ по тел. (044) 287-07-77, НТБ ИЭС).

Системы роботизированной сварки для бельгийских производителей строительных машин, с. 66.

Одна установка, выполняющая плазменную и автогенную резку, с. 66–67.

Сервоприводы для контактной сварки, с. 67-68.

Изготовление сварочных агрегатов в Лейпциге, с. 68.

Weib E. Обусловленные сваркой факторы влияния при определении прочности сосудов давления, с. 71–94.

Wesling V. Исследования разработки присадочных материалов на основе меди и никеля для процесса плазменно-порошковой пайки, с. 95–96.

Jerzembecr J. 9-я сварочная выставка «Сварка и резка-2004» в Пекине, с. 105–106.

Leuschen B. 19-я конференция по контактной сварке в Дуисбурге в мае 2004 г., с. 106–111.

Хи Р. Успехи в области контактной сварки. 3-й Международный семинар в ноябре 2004 г. в Берлине, с. 112–113.

Zwatz R. Управление качеством в области сварочной техники. Заседание комитета CEN/NC 121/SC4 в ноябре 2004 г. в Берлине, с. 113-114.

Gerlach K.-H., Wasle G. Полностью механизированное производство сосудов из алюминия для грузовых транспортных средств, с. 51–55.

Новые достижения в сварке алюминия, с. 55.

Высокая производительность — процесс сварки в четырехкомпонентном защитном газе (Т.І.М.Е.) с оцифровкой параметров повышает производительность при работе вручную, с. 56

Новые виды компактных шлифовальных машин мощностью менее 4кВт, с. 57–58.

Nova — новая компактная машина для проявления рентгеновских пленок в промышленности, с. 58–59.

SCHWEISSEN und SCHNEIDEN (Германия) 2005. — № 4 (нем. яз.)

Hartmann G. F. Капитальные затраты немецких предприятий, с. 122–123.

DVS приглашает на сварочную выставку в Эссен, с. 123. **Blum P.** Использовать преимущества местоположения предприятия в Германии, с. 123–124.

«Виртуальный музей техники соединения» на компакт диске, с. 125.

Повышение производительности роботизированной сварки МАГ, благодаря оптимизированному применению защитного газа, с. 126.

Интервью Александра Калавритиноса, специалиста по термическому напылению, с. 127–128.

Trommer G. Новое программное и материальное обеспечение при сварочном процессе с переносом холодного металла (CMT — Cold-Metal-Transfers), с. 128.

Kremsner F. et al. Термическое напыление установок внутреннего сгорания, с. 134–136.

Lugscheider E. et al. Актуальные направления развития техники термического напыления (краткий обзор), с. 137–140.

Heinrich P. et al. Стандарты DIN и рекомендации DVS по термическому напылению — определить последовательное использование, с. 141–147.

Hohle H.-М. Напыление аппаратами для скоростного газопламенного напыления с использованием горючих газов и жидкостей — философия и факты, с. 148–151.

Grasme D. Низкотемпературное газопламенное напыление в серийном производстве, с. 152–155.

Krommer W., Heinrich P. Современное газоснабжение при термическом напылении, с. 156–158.

Steinhage M., Jerzembeck J. Определение предельных величин для монооксидов азота на рабочем месте, с. 161–164.

Mubmann J., Zwatz R. Глобальное значение стандартов по аппаратам давления, с. 169–170.

Zwatz R. Технические требования к сооружению стальных несущих конструкций, с. 170–171.

SCHWEISSEN und SCHNEIDEN (Германия) 2005. — N_2 5 (нем. яз.)

Финансирование исследований в Европе, с. 179–180.

Baumgart P. Алюминиевые и магниевые присадочные материалы для роботизированной сварки, с. 182–184.

Эффективная защита слуха облегчает применение новых европейских стандартов, с. 184.

Легированный металлический порошок для твердых слоев, с. 184–185.

Staniek G. et al. Оксиды в алюминиевых сплавах, сваренных трением с перемешиванием, с. 189–197.

Vollertsen F. et al. Улучшение свойств сварных швов лазерным переплавом, с. 198–204.

Adamiec P., Gawrysiuk W. Свойства расплавленных швов с литой структурой хрома, с. 205–211.

Anders J. Ручная лазерная сварка, с. 217–218.

Dilthey U. et al. Интеграция техники соединения в производстве, с. 218–221.

SUDURA (Румыния) 2005. — Vol. XV, № 3 (рум. яз.)

Petrica A., Milos L. Количественный микроанализ слоев, выполненных термическим напылением на внутренние цилиндрические поверхности. Ч. 2. Результаты количественного микроанализа нанесенных слоев, с. 5–10.

Parvu M., Diaconu M. Эргономическое оборудование для подводной резки и сверления с использованием кислородного копья, с. 11–16.

Dumbrava D. et al. Экспериментальные исследования и аналитическая оценка остаточных деформаций при сварке алюминия. Ч. 1. Первоначальный анализ и подготовка к экспериментальному исследованию, с. 17–21.

TWI CONNECT (Англия) 2004. — № 136 (May/June) (англ. яз.)

Применение сварки трением с перемешиванием в метрополитене Лондона, с. 1–3.

Испытания на критическое раскрытие трещины, с. 4–5.

WELDING and CUTTING (Германия) 2005. — N_2 3 (англ. яз.)

Hardwick R. Новый толстолистовой материал, плакированный титаном и цирконием — переворот в области технологии плакирования, с. 114–118.

Jessop T. J. Национальная и международная аттестация персонала по сварке, с. 120–123.

Jenicek A., Cramer H. Приварка втулок к изделиям из алюминиевых сплавов — будущая разработка для соединения небольших полых тел с помощью дуги, вращающейся в магнитном поле, с. 126–130.

Schirmacher A., Sutter E. Коэффициент пропускания инфракрасного излучения в фильтрах для глаз, с. 135–142.

Killing R. Плазменная высокотемпературная пайка — преимущества и недостатки по сравнению с пайкой способом МИГ, с. 147–149.

Sicking R. Высокотемпературная пайка алюминиевых теплообменников, с. 150–159.

WELDING JOURNAL (США) 2005. — Vol. 84, № 5 (англ. яз.)

Villafuerte J. Напыление без подогрева — новая технология. с. 24–29.

Cortina P. Сплошная проволока по сравнению с порошковой проволокой с металлическим сердечником — какая из них должна использоваться для оптимизации роботизированного процесса?, с. 30–32.

Mossman M. Информация по присадочным материалам, которую можно найти на сайте, с. 33–35.

Tuthill A. H. Коррозионные испытания сварных изделий из аустенитной нержавеющей стали, с. 36–40.

Johnsen R. Обелиск, воздвигаемый в честь почетных героев, с. 68–70.

Neilson A. R. Репутация школы зависит от успеха ее студентов, с. 71–73.

Wiswesser R. K. Сравнение методов определения температуры, с. 74–79.

Vandenberg M. Выбор правильного типа портативного устройства для подачи проволоки, с. 77–79.

Song O. et al. Экспериментальное исследование для определения электроконтактного сопротивления при контактной сварке, с. 73–76.

Klingensmith S. et al. Микроструктурные характеристики двухстороннего шва, выполненного сваркой трением с перемешиванием на сверхаустенитной нержавеющей стали, с. 77–85.

WELDING JOURNAL (США) 2005. — Vol. 84, № 6 (англ. яз.)

Brunning A. Подводная сварка труб с использованием метода сбалансированного давления, с. 26–32.

Orlowski J. et al. Орбитальная сварка титановых труб — применение на бразильско-китайском авиационном предприятии, с. 34–37.

Bruckner J. Перенос металла в холодном состоянии в будущих соединениях стали с алюминием, с. 38–40.

Sammons M. Основы технологии прецизионной ручной дуговой сварки вольфрамовым электродом в среде защитного газа, с. 42–43.

Still J. R. et al. Изготовление палубных консольных конструкций морских платформ, с. 44–48.

Campbell K. Двух- и четырехгодичное обучение по специальности техник и инженер-сварщик в государственном университете г. Ферриса, с. 50–53.

Jenkins N. T., Eagar T. W. Химический анализ частиц дыма и паров при сварке, с. 87–93.

Ozden H., Gursel К. Т. Срок службы вольфрамовых электродов при сухой подводной сварке в условиях повышенного давления, с. 94–99.

ZVARANIE-SVAROVANI (Словакия) 2005. — Rc. 54, № 3 (слов. яз.)

Brziak P. et al. Ремонтная сварка сосудов давления из стали SQV2A без последующей термообработки швов. Ч. 3. Примеры использования разных режимов сварки, с. 63–67.

Pechna J. et al. Сварка мартенситной стали P92 в энергетике, с. 68–76.

Kalna K. Требования к качеству сварных конструкций и причины их повреждения, с. 77–81.

Sebro P. et al. Будущее бессвинцовой пайки, с. 82-84.

ZVARANIE-SVAROVANI (Словакия) 2005. — Rc. 54, № 4 (слов. яз.)

Bernasovsky P., Holecko V. Новые сверхмартенситные стали и их сварка, с. 95–99.

Halla P. Выбор оптимального типа вольфрамого электрода для сварки ТИГ, с. 99–101.

Zatko M., Eckhardte E. Методы измерения твердости материалов и принципы выбора портативных измерительных приборов, с. 101–105.

Pesek L. Испытание на измерение твердости вдавливанием шарика и определение местных механических свойств материалов, с. 106–112.

Kucik P. Практические примеры использования ультразвуковых датчиков на основе «фазовой решетки» в энергетике, с. 112–115.

ПЕРЕВОДЫ СТАТЕЙ ИЗ ЗАРУБЕЖНЫХ ЖУРНАЛОВ

Вневакуумная электронно-лучевая сварка легких тонколистовых металлов и стальных листов / Бах Ф. В., Желяговски А. и др. — К.: ИЭС, 2005. — 13 с. — Пер. из журн.: Welding in the World. — 2003. — Vol. 47. — № 3/4.

Спектральная диагностика многокомпонентной плазмы дуги / Сонг Ю., Ли Ж. — К.: ИЭС, 2005. — 8 с. — Пер. из журн.: China Welding. — 1998. — Vol. 7. — № 1.

Соединение алюминиевого сплава с низкоуглеродистой сталью лазерной сваркой с применением давления / Нисимото К., Фудзии Х. и др. — К.: ИЭС, 2005. — 8 с. — Пер. из

КРАТКИЕ СООБЩЕНИЯ

журн.: Quarterly Journal of the Japan Welding Society. — 2004. — Vol. 22. — № 4. — Р. 572–579.

Система слежения по шву в реальном масштабе времени для автоматизированной дуговой сварки плавлением / Де А., Парль Д. — К.: ИЭС, 2005. — 15 с. — Пер. из журн.: Science and Technology of Welding and Joining. — 2003. — Vol. 8. — № 5.

Адаптивное управление обратным валиком при сварке в V-образную разделку без сварочной подкладки / Ямане С., Ямамото Х. и др. — К.: ИЭС, 2005. — 15 с. — Пер. из журн.: Science and Technology of Welding and Joining. — 2004. — Vol. 9. — № 2.

PULSVEC — новая технология и оборудование для пайки алюминия / Нисимура М., Карэко М. и др. — К.: ИЭС, 2005. — 6 с. — Пер. из журн.: J. of Light Metal Weld. & Construction. — 2003. — Vol. 41. — № 8. — Р. 12–18.

Современные направления исследований в области пайки алюминия / Такэмото Т. — К.: ИЭС, 2005. — 17 с. — Пер. из журн.: Journal of Japan Institute of Light Metals. — 1991. — Vol. 41. — № 10. — Р. 639–649.

Система адаптивного управления для контроля изменения зазора между свариваемыми кромками при роботизированной сварке в узкий зазор / Шариф Л. Г., Ямане С. и др. — К.: ИЭС, 2005. — 14 с. — Пер. из журн.: Welding International. — 2003. — Vol. 17, № 8. — Р. 605–614.

Сварка корневых валиков на стали Р91 / Патрик Ч., Фергюссон Т. и др. — К.: ИЭС, 2005. — 7 с. — Пер. из журн.: Welding Journal. — 2004. — № 7.

Сварка полых конструкций из высокотемпературных материалов / Дилтай У., Озе П. и др. — К.: ИЭС, 2005. — 6 с. — Пер. из журн.: Schweissen und Schneiden. — 2004. — № 1. — S. 11–15.

Применение гибридных технологий соединения тонких листов с низким тепловложением / Хан В., Виббке Е.-М. — К.: ИЭС, 2005. — 9 с. — Пер. из журн.: Schweissen und Schneiden. — 2004. — № 11. — S. 593.

Диффузионная сварка соединений титан—алюминий и титан-сталь / Вильден И., Бергман Ж.П. — К.: ИЭС, 2005. — 8 с. — Пер. из журн.: Schweissen und Schneiden. — 2004. — № 5. — S. 199–207.

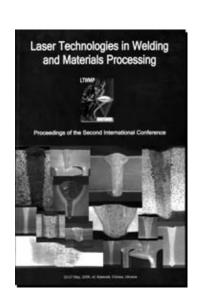
Технологические и металлургические аспекты при сварке гибридных соединений / Хайнеман Г., Келлер Г. и др. — К.: ИЭС, 2005. — 6 с. — Пер. из журн.: Schweissen und Schneiden. — 2004. — № 12. — S. 170.

Новая система управления сварочной головкой на базе оценки интенсивности эмиссии дуги при импульсно-дуговой сварке алюминия / Раймерс И. Д. — К.: ИЭС, 2005. — 6 с. — Пер. из журн.: DVS 225. — S. 9–13.

НОВАЯ КНИГА

Вышел из печати сборник трудов II Международной конференции «**Лазерные технологии в сварке и обработке материалов»** / Под ред. акад. Б. Е. Патона и проф. В. С. Коваленко. — Киев, ИЭС 2005. — 208 с., формат 200×290 мм, мягкий переплет), язык англ.

В сборник включено свыше сорока докладов ученых и специалистов Украины, России, Германии, Польши, Китая и Финляндии, Беларуси, США, Швейцарии, Бельгии, Сирии.


Содержание сборника включает следующие разделы:

- Пленарные доклады
- Оборудование
- Термообработка
- Моделирование
- Быстрое макетирование
- Наплавка
- Сварка

По вопросу приобретения сборника просьба обращаться в редакцию журнала «Автоматическая сварка».

Тел./факс: (044) 529 26 23, 528 34 84

E-mail: journal@paton.kiev.ua

