
ÓÄÊ 519.872

W. Bielecki, K. Siedlecki
Faculty of Computer Science, Technical University of Szczecin
(Zo�nierska 49 st., 71-210 Szczecin, Poland,
fax. (+4891) 4876439, E-mail: wbielecki@wi.ps.pl, ksiedlecki@wi.ps.pl)

Extracting Synchronization-free Slices
in Perfectly Nested Loops

An algorithm, permitting us to extract iterations belonging to synchronization-free slices and to
generate code enumerating sources of such slices and iterations of each slice in lexicographical
order is presented. Synchronization-free slices can be executed independently preserving the lex-
icographic order of iterations in each slice. Our approach requires exact dependence analysis and
based on operations on relations and sets. To describe and implement the algorithms, the depend-
ence analysis by Pugh and Wonnacott was chosen where dependences are found in the form of
tuple relations. The proposed algorithms have been implemented and verified by means of the
Omega project software. Presburger arithmetic limitations are discussed. Results of experiments
are presented. Tasks for future research are outlined.

Ïðåäñòàâëåí àëãîðèòì, ïîçâîëÿþùèé âûäåëèòü èòåðàöèè, ïðèíàäëåæàùèå íåñèíõðîíè-
çèðîâàííûì ôðàãìåíòàì, è ãåíåðèðîâàòü ïðîãðàììó, ïåðå÷èñëÿþùóþ èñòî÷íèêè òàêèõ
ôðàãìåíòîâ è èòåðàöèé â êàæäîì ôðàãìåíòå â ëåêñèêîãðàôè÷åñêîì ïîðÿäêå. Íåñèíõðî-
íèçèðîâàííûå ôðàãìåíòû ìîãóò âûïîëíÿòüñÿ íåçàâèñèìî, ñîõðàíÿÿ ëåêñèêîãðàôè÷åñêèé
ïîðÿäîê èòåðàöèé â êàæäîì ôðàãìåíòå. Äàííûé ïîäõîä òðåáóåò òî÷íîãî àíàëèçà çàâèñè-
ìîñòè è îñíîâàí íà îïåðàöèÿõ ñ îòíîøåíèÿìè è ìíîæåñòâàìè. Äëÿ îïèñàíèÿ è ðåàëèçàöèè
àëãîðèòìîâ, âûáðàí àíàëèç çàâèñèìîñòè ïî Ïóãó è Âîííàêîòó, â êîòîðîì íàéäåíû çàâèñè-
ìîñòè â ôîðìå îòíîøåíèé êîðòåæà. Ïðåäëîæåííûå àëãîðèòìû ðåàëèçîâàíû è âåðèôèöèðî-
âàíû ïîñðåäñòâîì ïðîãðàììíîãî ïàêåòà Îìåãà. Ïðåäñòàâëåíû ðåçóëüòàòû ýêñïåðèìåíòîâ.

K e y w o r d s: loop transformations, perfectly nested loops, synchronization-free parallelism.

Introduction. Extracting synchronization-free slices in loops is of great importance
for parallel and distributed computing, enhancing code locality, and reducing me-
mory requirements. Different techniques have been developed to extract synchroni-
zation-free parallelism available in loops, for example, [1—13]. However, to our
knowledge, none of well-known techniques extracts the entire synchronization-free
parallelism available in the general case of affine non-uniform loops.

The goal of this paper is to present an approach which permits us to extract

synchronization-free slices available in loops when well-known techniques may

fail to extract such slices. It is applicable to perfectly nested both non-parame-

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2007. Ò. 29. ¹ 6 61

��������	�
��	

�
��	����������	��

terized and parameterized loops and allows synchronization-free slices to be ex-

tracted at compile or run-time.

The purpose of extracting synchronization-free slices is not only to get scal-

able performance on parallel computers and distributed systems but also to en-

hance performance on a uniprocessor thanks to enhancing data locality and to re-

duce memory requirements to decrease cost and power consumption in embed-

ded systems. When independent threads are extracted, well-known approaches

can be applied to enhance data locality, for example, blocking and array contrac-

tion. Each new value produced at each iteration must be kept into a memory

buffer until its last use by another statement of the loop. The size of memory

needed to store a value computed and used at different iterations is given by the

amount of iterations that the value has to cross. In this paper we describe a tech-

nique that permits us to extract synchronization-free slices, each of them is com-

prised of a chain of dependent iterations, hence each value produced at iteration i

is consumed at iteration i + 1. This reduces the size of required memory to hold

temporary values.

Computations described with a loop can be represented with independent ite-

rations, and (or) synchronization-free treads, and (or) thread requiring synchro-

nization. Our paper deals only with extracting synchronization-free slices. The

separation of synchronization-free threads from the rest computation repre-

sented with a loop is motivated by the following arguments. Synchroniza-

tion-free slices can be executed independently from the rest computation repre-

sented with a loop. This may permit us to enhance performance on parallel com-

puters and distributed systems (no synchronization at executing on parallel com-

puters, no communications at executing on distributed systems) because compu-

tation may be represented only or mostly with synchronization-free slices. Code

representing synchronization-free slices can be used to synthesize hardware of

an embedded system permitting for reducing the memory size and power con-

sumption, whereas code representing the rest computation can be executed by

means of software of the embedded system. To parallelize the rest iterations(in-

dependent, i. e., those that do not belong to any slice as well as iterations belong-

ing to slices requiring synchronization), well-known transformations can be ap-

plied, for example [11, 12, 14—17] and this task is out of the scope of this paper.

The main idea of the proposed approach is based on the iteration space slic-

ing [18]. It is to firstly split all the loop iterations into dependent and independent

ones. Next synchronization-free slices are extracted from dependent iterations.

They can be executed independently without any synchronization among them.

Our approach is based on exact data dependence analysis and on operations

on sets and relations. We have implemented and verified our approach by means

of the Omega project software [19].

W. Bielecki, K. Siedlecki

62 ISSN 0204–3572. Electronic Modeling. 2007. V. 29. ¹ 6

Background. In this paper, we deal with affine perfectly nested loop where,

for given loop indices, lower and upper bounds as well as array subscripts and

conditionals are affine functions of surrounding loop indices and possibly of

structure parameters, and the loop steps are known positive constants.
Two iterations I and J are dependent if both access the same memory loca-

tion and if at least one access is a write. We refer to I and J as the source and des-
tination of a dependence, respectively, provided that I is lexicographically less
than J I J()� . The vector d = J – I is referred to the dependence vector. The
loop nest is said to be uniform if all dependence vectors do not depend neither on
I, nor on J.

Our approach requires an exact representation of loop-carried dependences
and consequently an exact dependence analysis which detects a dependence if
and only if it exists. To describe and implement our algorithms, we chose the de-
pendence analysis proposed by Pugh and Wonnacott [20].

Program slicing is a viable method to restrict the focus of a task to specific
sub-components of a program. Program slicing was first introduced by Mark
Weiser [21]. According to the original definition [22], the notion of slice was
based on the deletion of statements. A slice is an executable subset of program
statements that preserves the original behavior of the program with respect to a
subset of variables of interest and at a given program point [22].

In paper [18] the idea of iteration space slicing was introduced. Iteration
space slicing takes dependence information as input to find all statement in-
stances from a given loop nest which must be executed to produce the correct
values for the specified array elements. We can think of the slice as following
chains of transitive dependences to reach all statement instances which can af-
fect the result.

In this paper, we deal with specific slices, which can be synchroniza-
tion-free or requiring synchronization. In our paper [23], we introduced the fol-
lowing definitions.

Definition 1. A slice is a set of dependent iterations including an ultimate
dependence source and all the dependence destinations such that each depend-
ence destination except from the lexicographically maximal destination (ulti-
mate dependence destination) is the source of the next dependence.

Definition 2. A slice is independent or synchronization-free if the intersec-
tion of the set of iterations representing this slice and the set representing the rest
of computation in a loop is empty.

Definition 3. The source of a slice is the ultimate dependence source that
this slice comprises, i.e., the lexicographically minimal iteration among all the
iterations belonging to this slice.

Our algorithms are based on the operations on relations and sets that are de-

scribed in detail in [19] and we assume that the reader is familiar with these oper-

Extracting Synchronization-free Slices in Perfectly Nested Loops

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2007. Ò. 29. ¹ 6 63

ations. We note only that we use both positive transitive closure, R+, and tran-

sitive closure, R*, in the algorithm presented in this paper.

The next section introduces an algorithm to find iterations belonging to

each synchronization-free slice as well as to generate code scanning sources of

synchronization-free slices and iterations of each slice in lexicographic order

provided that are given sources of synchronization-free slices extracted accord-

ing to algorithms presented in our paper [23].

Finding iterations of synchronization-free slices and code generation.

In this section, we present how to find iterations belonging to synchroniza-

tion-free slices and how to generate code that scans synchronization-free slices

and iterations within each synchronization-free slice in lexicographic order. We

use {X, Y} to represent the cross-product of sets X, Y, i. e., {X, Y}:= X � Y: ={[x,

y] | x � X, y � Y}.

To demonstrate a trouble at generating code scanning synchronization-free

slices, let us consider the following dependence relation

R1 := {[i, j] -> [i + 1, j + 1] : 1 � i < 4 && 1 � j < 4}.

Set comprising sources of synchronization-free slices, SFS, being calculated

on the basis of this relation is as follows

SFS = (domain R1) – (range R1) = {[1, j]: 1 � j � 3} union {[i,1]: 2 � i � 3}.

There is no problem to scan iterations of a single slice with applying a code gen-

erator to a set

R1 ({[an element � SFS]}).

But if we wish to generate a loop whose outer nests scan sources of slices while

inner nests scan iterations of each slices, we have a trouble. The set representing

iterations of all slices is as follows

S = R1*(SFS) = {[i, j]: 2 � i � j � 4} union {[i, j]: 2 � j < i � 4}

union {[1, j]: 1 � j � 3} union {[i,1]: 2 � i � 3}.

Code, enumerating elements of set S in lexicographic order, scans iterations be-

longing to different slices and it does not realize our goal (Fig. 1).

To generate correct code, we may apply the following scheme:

Code enumerating iteration vectors for elements of SFS;

Code scanning elements of the set R1* ({[iteration vector of an element

of SFS]}).

To implement the scheme above, we propose a solution that permits for ap-

plying any well-known code generation technique. Our proposal is to form set �S

that is the union of all the cross-products {[ei, R* (ei)]}, i = 1, 2, ..., n, where n is

the number of synchronization-free slices, ei represents a slice source (the

W. Bielecki, K. Siedlecki

64 ISSN 0204–3572. Electronic Modeling. 2007. V. 29. ¹ 6

i-th-element of set SFS), R*(ei) is the set including the iterations belonging to the

slice starting with ei. For relation R1, we get the following set

�S := {[1, j, �i , �i +j�1]: 2 � �i � � j + 5 && 1 � j} union {[i,1, �i , �i �i+1]: 2 � i < �i � 4}

union {[1, j, 1, j]: 1 � j � 3} union {[i, 1, i, 1]: 2 � i � 3}.

The code, scanning elements of set �S , is presented in Fig. 1, where the indices

representing slice sources are removed from the loop statement.

Below we attach an algorithm implementing the proposed solution and tak-

ing as input the output of Algorithm 1 or Algorithm 2 [23].

Algorithm 1. Finding iterations belonging to synchronization-free slices

and code generation.

Input: output of Algorithm 1 [23] (a set of sources of synchronization-free

slices, SFS, and set S_In containing dependence relations), or output of Algo-

rithm 2 [23] (loop indices defining subspaces where the algorithm extracts

sources of synchronization-free slices; sources of synchronization-free slices

described with relations contained in set S_Out, SFS; set S_Out); the number of

dependence relations contained in set S_In or set S_Out, m.

Output: code scanning slices and iterations of each of them in lexico-

graphic order.

1. If the input of the algorithm is the output of Algorithm 2 [23], then

1.1. For each dependence relation in set S_Out remove constraints imposed

on the loop indices being produced with Algorithm 2 [23] and declare these in-

dices as symbolic constants.

Extracting Synchronization-free Slices in Perfectly Nested Loops

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2007. Ò. 29. ¹ 6 65

Fig. 1. Scanning elements of sets S and �S

Code enumerating iterations

of set S:

for(j = 1; j <= 3; j++)

s1(1, j);

for(i = 2; i <= 4; i++) {

if (i <= 3)

s1(i,1);

for(j = 2; j <= i�1; j++)

s1(i, j);

for(j = i; j <= 4; j++)

s1(i, j);

}

Code enumerating iterations of

set �S :

par for(j = 1; j <= 3; j++)

{

for(i� = 1; i� <= �j + 5; i�++)

s1(i�, i�+j�1);

}

par for(i = 2; i <= 3; i++)

{

for(i�= i; i� <= 4; i�++)

s1(i�, i��i+1);

}

i

j

order of scanning

elements of /S S �

by the outer / inner loop

/

/

1.2. Generate a nest of sequential loops scanning the values of the loop indi-

ces being produced with Algorithm 2 [23] by means of extracting and rewriting

the correspondent nest of the original loop.

2. Calculate relation R as the union of all the relations from set S_In (if the

input is the output of Algorithm 1 [23] or set S_Out (if the input is the output of

Algorithm 2 [23]) for which Ri (SFS) � EMPTY, where Ri is a relation from set

S_In or set S_Out, i � [1, m].

3. Calculate set S using step 3a or 3b.

3a. With applying transitive closure:

3.1. Calculate transitive closure of R, R*:= R+ � I.

3.2. Build set S of the form S := {[ei , R*(ei)]: 	 ei � SFS }

3b. Without applying transitive closure (only for non-parameterized SFS

and R)

3.1. Form set SFSD as follows:

SFSD := { [ei, ei] : 	 ei � SFS },

3.2. Form relation RD as below:

RD := {[ei, In]->[ei , R (In)]: 	 ei � SFS },

where In is an arbitrary tuple of variables of the same size as that of the tuple rep-

resenting ei ,

3.3. S := SFSD, Temp := SFSD,

3.4. Temp := RD (Temp) – S,

3.5. If Temp � EMPTY then S := S � Temp go to 3.4, else the end.

4. Generate code enumerating elements of set S in lexicographic order by

means of any known technique, for example, presented in [3, 24—26].

5. Remove from the loop statements of the code, generated in step 4, the first

n/2 variables (variables of the tuple representing slice sources).

6. If step 1.2 generates a nest of loops, then inside the nest generated at step

1.2 insert loops scanning synchronization-free slices and iterations of each of

them being generated in steps 3—5.

It is worth to note that the first n/2 variables of set S built in step 3a or 3b,

where n is the number of all the variables of S, represent sources of synchroniza-

tion-free slices, while the rest n/2 variables of this set are responsible for scanning

the slice iterations. The code generated from set S (the result of step 4) scans itera-

tions belonging to slices in lexicographic order starting with the lexicographically

minimal slice source, but the loop statements in such a code have redundant index

variables. The code, generated from set S and where the first n/2 variables (respon-

sible for representing slice sources) are removed from the loop statements (the re-

sult of step 5) does not have redundant index variables in the loop statements and

scans slices and iterations of each of them in lexicographic order.

W. Bielecki, K. Siedlecki

66 ISSN 0204–3572. Electronic Modeling. 2007. V. 29. ¹ 6

Step 3b can be applied to loops with parameterized upper bounds only at

run-time when the loop bounds become known.

Step 3a of Algorithm 3 is based on applying the transitive closure operation.

As it was already mentioned in [23], exact transitive closure cannot be repre-

sented with affine forms in the general case of non-uniform dependence rela-

tions. When for a given relation, exact transitive closure cannot be calculated by

the Omega calculator, there exists a possibility to calculate bounds of transitive

closure[27] and still find the synchronization-free slices.

Let us illustrate Algorithm 3 by means of the following example.

Example 1.

for(i = 1; i � n; i++)

for(j = 1; j � n; j++)

a(j+4, j+1) = a (i+2*j+1, i + j + 3)

For the loop of Example 1, Petit generates the following dependence relations

R1 := {[i,5] -> [i, i + 7] : 1 � i � n –7},

R2 := {[i,5] -> [i�, i + 7] : 1 � i < �i � n && i � n – 7},

R3 := {[i,i + 8] -> [i + 1,5] : 1 � i � n – 8},

R4 := {[i,j] -> [j – 7,5] : 1 � i � j – 8 && j � n},

R5 := {[i,j] -> [�i , j] : 1 � i < �i � n && 1 � j � n}.

After removing redundant transitive dependences represented with R5, we get

R5 � in the form

R5 � := {[i,j] -> [i+1,j] : 1 � i < n && 1 � j � n}.

Fig. 2 represent dependences for Example 1 before and after removing re-

dundant dependences (in Fig. 2, a, dependences described with R5 are shown

only for j = 1).

Following Algorithm 1 [23], we yield.

1. R := R1 union R2 union R3 union R4 union R5 � = {[i,5] -> [i,i+7] : 1 � i �
� n–7} union {[i,5] -> [i �,i+7] : 1 � i < i � � n && i � n – 7} union {[i,j] -> [j– 7,5] :

1� i � j–8 && j � n} union {[i,j] -> [i+1,j] : 1 � i < n && 1 � j � n},

IR := inverse R := {[i,i+7] -> [i,5] : 1 � i � n–7} union {[i,j] -> [j–7,5] : 8 � j �
� i+6, n && i � n} union {[i,5] -> [i �,i+7] : 1� i � < i � n�7} union {[i,j] -> [i–1, j] :

2� i � n && 1 � j � n},

CI := EMPTY.

2. CI := {[i, i+7]: 1 � i � n–7} union {[i,5]: 1 � i � n–7} union {[i, j]: 8 � j �
� i+6, n && i � n} union {[i,j]: 1� i � j–8 && j � n}.

3. UDS := domain R – range R := {[1, j]: 1 � j � 7, n && 2 � n} union {[1, j]: 9 �
� j � n} .

4. Since CI is not EMPTY, go to step 5a (using transitive closure).

Extracting Synchronization-free Slices in Perfectly Nested Loops

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2007. Ò. 29. ¹ 6 67

5. The omega calculator does not permit us to calculate exact transitive clo-

sure for IR. Calculating and using the upper bound (UNKNOWN=True) for the

inexact transitive closure yielded with the Omega calculator, we get the follow-

ing set

SFS := {[1, j]: j, 2 � n � 7 && 1 � j} union {[1, j]: n = 8 && 6 � j � 7}

union {[1, j]: n = 8&&1 � j � 4},

which does not include all sources of synchronization-free slices, we miss some

sources.
Calculating the lower bound for TIR (UNKNOWN=False) permits us to extract

all sources of synchronization-free slices being contained in the following set

SFS {[1, j]: j, 2 � n � 7 && 1 � j} union {[1, j]: 6 � j � 7 && 8 � n}

union {[1, j]: 1 � j � 4 && 8 � n}.

Applying Algorithm 1 with step 3a, we get the following code scanning
slices and iterations of each of them (Fig. 3)

Applying Algorithm 1 to the output of Algorithm 2 [20] for Example 1 be-
ing presented in [23], we generate the following code

if (n >= 2)

seqfor(k = 1; k <= n; k++)

parfor(i = 1; i <= n; i++)

W. Bielecki, K. Siedlecki

68 ISSN 0204–3572. Electronic Modeling. 2007. V. 29. ¹ 6

i

j

i

j

Fig. 2. Dependences described by relations R1— R5 (a) and R1—R4 and R5� (b) for n = 10

seqfor(j = 1; j <= n; j++)

a(i,j,k)=a(i,j�1,k)

b(i,j,k)=b(i,j,k�1).

This loop enumerates n synchronization-free slices defined by values of in-
dices i and j in each of n subspaces being defined by values of k. Subspaces are
scanned sequentially with the most outer loop.

Presburger arithmetic limitations. In paper [23], several limitations of
Presburger arithmetic concerned calculating exact transitive closure were men-
tioned. In this section, we show why using only Presburger arithmetic does not
permit us to extract the entire synchronization-free parallelism available in an
examined loop. Then we discuss what problems have to be resolved in the future
to apply the presented algorithms for extracting slices in loops whose exact tran-
sitive closures are represented with non-linear forms.

Example 2. Let us consider the following loop:

for(i = 1; i � n; i++)

a[i] = a[2i];

The relation representing loop-carried dependences in this loop is as follows

R := {[i]->[2i]: 1 � i, 2i � n}.

Fig. 4 shows the dependences among iterations for the loop of Example 2.
The sources of synchronization-free slices belong to the following set, SFS,

SFS : = UDS : = domain R – range R : = {[i] : Exists (alpha : 2alpha = 1+

+i &&1� i && 2i � n)}.

Extracting Synchronization-free Slices in Perfectly Nested Loops

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2007. Ò. 29. ¹ 6 69

Fig. 4. Dependences for the loop of Example 2 for n=12

if (n ³ 2 && n � 7) {

par for(t2 = 1; t2 � n;

t2++) {

s1(1,t2);

seq for(t3 =2; t3 � n;

t3++)

s1(t3,t2);

}

}

if (n >= 8) {

par for(t2 = 1; t2 <= 4;

t2++) {

s1(1,t2);

seq for(t3 = 2; t3 � n;

t3++)

s1(t3,t2);

}

}

if (n >= 8) {

par for(t2 = 6; t2 � 7;

t2++) {

s1(1,t2);

seq for(t3 =2; t3 � n;

t3++)

s1(t3,t2);

}

}

Fig. 3. Cod scanning slices and iterations

The transitive closure of relation R, calculated with the Omega calculator, is of

the form

TR := (R+) union {[i]->[i]} = {[i] -> [i]} union {[i] -> [i �] : Exists (alpha : 0 = i � +

+ 2alpha && 4i � i � � n && 1 � i && 2i � � n + 8i && UNKNOWN)} union {[i] ->

->[2i] : 1 � i && 2i � n} union {[i] -> [4i] : 1 � i && 4i � n}.

The upper bound (UNKNOW = TRUE) and the lower bound (UNKNOWN =

FALSE) of TR, UTR and LTR, are as follows

UTR := upper_bound TR := {[i] -> [i]} union {[i] -> [i �] : Exists (alpha : 0 = i �+
+2alpha && 4i � i �� n && 1 � i && 2i � � n + 8i)} union {[i] -> [2i] : 1 � i && 2i � n},

LTR := lower_bound TR := {[i] ->[i]} union {[i] -> [2i] : 1 � i && 2i � n}

union {[i] -> [4i] : 1� i && 4i � n}.

The code generated with applying the upper bound of TR is incorrect while

that generated with applying the lower bound of TR does not enumerate all itera-

tions of the slice with source at iteration 1.

To generate correct code, we have calculated the exact positive transitive

closure manually, it is of the form

R
:= {[i] -> [j] : Exists (k: k �1 && j = 2k*i && 1 � i, j � n)}.

The transitive closure is represented with the following set

R*:= R+ union I := {[i] -> [j] : Exists (k: k � 0 && j = 2k*i && 1 � i, j � n)},

where I is the identity relation. Following Algorithm 3 and using set SFS and re-

lation R*, we build the following set, S, representing synchronization-free slices

and iterations of each of them

S := {[i, j]: Exists (alpha : 2alpha = 1+i && 1 � i && 2i � n) && exists (k: k �

� 0 && j = 2k* i && 1 � i, j � n)}.

As we can see, set S (when n = 12) represents the three synchronization-free

slices: (i): 1,1; 1,2; 1,4; 1,8; (ii):3,3; 3,6; 3,12; (iii): 5,5; 5,10. After applying

steps 4 and 5 of Algorithm 1, we yield the following loop scanning synchroniza-

tion-free slices and their iterations in lexicographic order:

par for(t1 = 1; t1 � intDiv(n,2); t1 += 2)

seq for(t2=0;2
t2

*t1 � n ; t2++) {

i=2
t2

*t1;

a[i] = a[2i];

}

From the example above, we can observe that the approach presented in this

paper works also in the case when the Omega calculator cannot calculate exact

transitive closure. To permit us to extract synchronization-free parallelism avail-

W. Bielecki, K. Siedlecki

70 ISSN 0204–3572. Electronic Modeling. 2007. V. 29. ¹ 6

able in the affine non-uniform loop by means of the approach presented, we

need: (i) calculating exact transitive closure which can be presented not only

with affine expressions but also with non-linear ones (Algorithms 1 presented in

our paper [23] and Algorithm 1 presented in this paper); (ii) calculating results

of the intersection and difference operations on sets which elements are de-

scribed not only by affine constraints but also with non-linear ones (Algorithm 1

[23]); (iii) code generation for sets of iterations which elements are described not

only by affine constraints but also with non-linear ones (Algorithm 3). Resolv-

ing these problems is out of the scope of this paper. We plan to study them in our

future work.

Experiments. The approach, described in this paper, was implemented us-
ing the Omega project software[19]. We have built a tool that extracts synchro-
nization-free slices from perfectly nested loops represented in the Petit lan-
guage[19].

To evaluate the effectiveness of the proposed approach, we have carried out
experiments with the perfectly nested Livermore loops [28] using the tool devel-
oped by us. Table 1 comprises the results of our experiments. The first column
presents the names of Livermore loops. All the loops under our experiments
have parameterized upper bounds and non-parameterized lower bounds. To re-
duce the number of dependences or to permit us to find dependences with Petit,
we have transformed several loops manually applying such well-known trans-
formations as scalar expansion (for loop K10 and loop K23), constant propaga-
tion (for loop K8), and the substitution of non-linear functions in the loop body
by linear ones with the same arguments (for loop K22).

The last transformation was applied to permit us to find dependences with
Petit, the body of the loop transformed has the original non-liner function exp(x).
The second column shows whether a source loop was modified or not. The third
column indicates whether there exists the necessity in applying step 5a of Algo-
rithm 1 [23] (because the loops under our experiments are parameterized, only
step 5a of Algorithm 1 can be applied). In our experiments, only step 3a of Algo-
rithm 3 was applied. The fourth column indicates which algorithm (Algorithm 1 or
Algorithm 2 [23]) was applied for extracting sources of synchronization-free slices.
The fifth column presents the numbers of synchronization-free slices extracted by

our approach in a correspondent loop. The denotation like «loop � 2 � 1 in each of

loop subspaces» means that if the condition loop � 2 � 1 holds, where loop is the
upper bound of a correspondent loop, then the number of synchronization-free
slices, extracted for this loop in each of loop subspaces, equals 1. The sixth col-
umn presents the amount of the time required for extracting synchroniza-
tion-free slices and generating code by means of our tool on a PC computer with
the following characteristics: Athlon 1600 + (~1400 MHz), RAM -256 MB,
OS -Windows 2000.

Extracting Synchronization-free Slices in Perfectly Nested Loops

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2007. Ò. 29. ¹ 6 71

As we can see from Table, the technique presented in this paper extracts

slices for each of the loops. In each subspace, slices can be executed independ-

ently, while subspaces are scanned sequentially in lexicographic order.

From the sixth column of Table, we may observe that the amounts of the

time needed for finding dependence relations and extracting synchroniza-

tion-free parallelism available in the Livermore loops investigated are not so

dramatic. Taking into account that the performance of computers is permanently

increased, we have the optimism that the approach presented in this paper may

be implemented in both academic and industry compilers in the future.

Related work. The results of the paper are within the iteration space slicing

framework introduced by Pugh and Rosser in paper [18]. This framework might

have a number of uses. Pugh and Rosser examined in paper [18] how to apply

this framework to optimization of interprocessor communication. In particular,

they demonstrated how to use slicing to enable loop fusion, tolerate message la-

W. Bielecki, K. Siedlecki

72 ISSN 0204–3572. Electronic Modeling. 2007. V. 29. ¹ 6

Loop name Modified
Step 5 of

Algorithm 1
Algorithm
from [23]

The number of
synchronization-free

slices

Loop
transform time,

s

K1— hydro fragment No No common
iterations

1 Loop � 2 � n 0,07

K5— tri-diagonal elimi-
nation, below diagonal

No 5a 2 Loop � 2 � 1 in each
of loop subspaces

0,29

K6 — general linear re-
currence equations

No 5a 2
i � 2 � 1 in each of

loop*n subspaces
0,38

K7 — equation of state
fragment

No No common
iterations

1 Loop � 2� n 0,06

K8 — ADI integration Yes 5a 2 n – 1 in each of loop
subspaces

0,21

K9 — integrate predic-
tors

No No common
iterations

1 Loop � 2 � n 0,07

K10 — difference pre-
dictors (vec)

Yes No common
iterations

1 Loop � 2 � n 0,08

K12 — first difference No No common
iterations

1 Loop � 2 � n 0,07

K21 — matrix*matrix
product

No 5a 2 n � 1 � 24*n in each
of loop subspaces

0,27

K22 — Planckian distri-
bution

Yes No common
iterations

1 Loop � 2� n 0,07

K23 — 2-D implicit
hydrodynamics frag-
ment

Yes 5a 2 n � 3 � 1 in each of
5* loop subspaces

0,46

Results of the experiments

tency and allow message coalescing. To form slices, they use the transitive clo-

sure operation to compute the transitive dependences among iterations and then

compute the set of iterations that are reachable via the transitive closure in the

forwards or backwards direction, depending on the application. But Pugh and

Rosser do not describe in paper [18] how to construct synchronization-free

slices. In our paper [23], we presented how to extract sources of both synchro-

nization-free slices and slices requiring synchronization.

As far as concerned code generation, we presented troubles at generating

code scanning synchronization-free slices and iterations of each slice. We

demonstrate how they can be resolved with applying well-known code genera-

tion techniques, for example, [3, 24—26].

Unimodular loop transformations [4, 13], permitting the outermost loop in a

nest of loops to be parallelized, find synchronization-free parallelism. But

unimodular transformations do not allow such transformations as loop fission,

fusion, scaling, reindexing, or reordering to be applied to extract synchroniza-

tion-free parallelism.

Paper [6] describes an approach, based on Hamiltonian recurrences, permit-

ting us to extract the entire synchronization-free parallelism. But this approach is

applicable only to uniform non-parameterized loops.

The affine partitioning framework, considered in many papers, for example,

[10—12, 14—16] unifies a large number of previously proposed loop transfor-

mations. Today, it is one of the most powerful frameworks for loop transforma-

tions allowing us to extract synchronization-free parallelism presented in loops

with both uniform and affine dependences. However, for the general case of

non-uniform loops, this framework does not permit us to build non-affine sched-

ules for extracting parallelism. We believe that our contribution consists in de-

monstrating that extracting synchronization-free slices may require non-affine

schedules as well as in exposing problems to be resolved in the future to allow

for deriving such schedules.

We would like to note that the iteration space slicing is a finer-grained app-

roach than the affine partitioning framework because the presented technique

extracts some subset of the statements in a loop body and a subset of the loop

nest’s iterations while that acts on all statements in a loop, or all iterations of an

individual statement. This insight was first presented by Pugh and Rosser in pa-

per [18]. The synchronization-free slice extracted by the technique presented in

this paper is not the same as the independent thread extracted by an affine trans-

form[11, 12]. Each slice is a chain of dependent iterations, whereas an independ-

ent thread would be comprised of many synchronization-free slices. Each syn-

chronization-free slice is an independent thread but an independent thread would

not be a slice. This property makes the iteration space slicing framework more

Extracting Synchronization-free Slices in Perfectly Nested Loops

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2007. Ò. 29. ¹ 6 73

extendible than the affine partitioning framework and could allow us to extract

synchronization-free slices when the affine partitioning framework fails to ex-

tract those available in loops. Loops scanning slices are more preferable than

loops scanning independent threads when the goal of the loop transformation is

to enhance data locality or reduce memory requirements because at executing a

slice each value produced at iteration i is consumed at iteration i + 1, whereas for

an independent thread it is not always true.

The approach, presented in [9], permits for building schedules that can be

expressed in Presburger arithmetic only and it does not permit for non-affine

schedules.

Conclusion. In paper [23] and in this paper, we described algorithms, per-

mitting us to find synchronization-free slices comprised of iterations of perfectly

nested uniform and non-uniform loops. Extracting synchronization-free slices

permits us to get code to be executed without synchronization among slices, en-

hance code locality, and (or) reduce memory requirements. The presented tech-

nique comprises the following steps: finding exact dependence relations, remov-

ing redundant dependence relations or removing redundant dependences from

dependence relations, finding sources of synchronization-free slices, extracting

iterations of synchronization-free slices, and code generation. We have imple-

mented the presented technique using the Omega project software and carried

out experiments with a number of loops.

The presented algorithms are not only to extract parallelism in loops but also

to transform loops to enhance data locality and reduce memory requirements and

can be used for uniprocessors as well.

It is worth to note that focusing on synchronization-free parallelism is very

important for understanding such a kind of the parallelism available in the loop,

not necessarily for its run-time execution. Hence, the results of this paper not

necessarily aim at the practical use, but have also a theoretical character. They

will permit us to answer the following questions: how many synchroniza-

tion-free slices are available in the loop; what is the cost we should pay for ex-

tracting parallelism and generating code scanning synchronization-free slices

available in the loop; whether this code is effective; how many synchroniza-

tion-free slices are not exposed by means of well-known approaches as well as

some other questions.

The most neuralgic operation, used in the presented algorithms, is transitive

closure. For the general case of the affine integer tuple relation, exact transitive

closure of the relation may not be affine [27]. In such cases, the Omega project

software may not permit us to extract synchronization-free parallelism available

in non-uniform loops because of the Presburger arithmetic limitations discussed

in this paper. There is the need for developing methods and algorithms allowing

W. Bielecki, K. Siedlecki

74 ISSN 0204–3572. Electronic Modeling. 2007. V. 29. ¹ 6

us to calculate: (i) exact transitive closure when it cannot be represented only

with affine forms; (ii) results of the intersection and difference operations on sets

whose elements are described not only by affine constraints but also by non-lin-

ear ones. There is the necessity in developing code generation algorithms to be

applied to sets of iterations with non-linear constraints. We plan to study these

problems in our future research.

Íàâåäåíî àëãîðèòì, ùî äîçâîëÿº âèä³ëèòè ³òåðàö³¿, ÿê³ íàëåæàòü íåñèíõðîí³çîâàíèì ôðàã-
ìåíòaì, ³ ãåíåðóâàòè ïðîãðàìó, ÿêà ïåðåë³÷óº äæåðåëà òàêèõ ôðàãìåíò³â òà ³òåðàö³é ó
êîæíîìó ôðàãìåíò³ â ëåêñèêîãðàô³÷íîìó ïîðÿäêó. Íåñèíõðîí³çîâàí³ ôðàãìåíòè ìîæóòü
âèêîíóâàòèñÿ íåçàëåæíî, çáåð³ãàþ÷è ëåêñèêîãðàô³÷íèé ïîðÿäîê ³òåðàö³é ó êîæíîìó
ôðàãìåíò³. Äàíèé ï³äõ³ä ïîòðåáóº òî÷íîãî àíàë³çó çàëåæíîñò³ ³ áàçóºòüñÿ íà îïåðàö³ÿõ ç
â³äíîøåííÿì òà ìíîæèíàìè. Äëÿ îïèñóâàííÿ òà ðåàë³çàö³¿ àëãîðèòì³â îáðàíî àíàë³ç çà-
ëåæíîñò³ çà Ïóãî òà Âîííàêîòîì, ó ÿêîìó çíàéäåíî çàëåæíîñò³ ó ôîðì³ â³äíîøåíü
êîðòåæà. Çàïðîïîíîâàí³ àëãîðèòìè ðåàë³çîâàíî ³ âåðèô³êîâàíî çà äîïîìîãîþ ïðîãðàì-
íîãî ïàêåòà Îìåãà. Íàâåäåíî ðåçóëüòàòè åêñïåðèìåíò³â.

1. Allen R., Kennedy K. Optimizing Compilers for Modern Architectures. — San-Francisco:
Morgan Kaufmann Publishers Inc., 2001. — 790 p.

2. Amarasinghe S. P., Lam M. S. Communication optimization and code generation for distributed
memory machines//Proc. of the SIGPLAN’93 New Mexico, June, 1993. — P. 126— 138.

3. Ancourt C., Irigoin F. Scanning polyhedra with do loops// Proc. of the Third ACM/SIGPLAN
Symposium on Principles and Practice of Parallel Programming. April 21-24. — Virginia :
ACM Press, 1991. — P. 39—50.

4. Banerjee U. Unimodular transformations of double loops// Proc. of the Third Workshop on Lan-
guages and Compilers for Parallel Computing. August, 1990. — Irvine, CA. — P. 192 — 219.

5. Beletskyy V. Finding Synchronization-Free Parallelism for Non-uniform Loops// Proc. of the
Computational Science — ICCS’2003. Lecture Notes in Computer Science. — Berlin/Hei-
delberg: Springer, 2003. — V. 2658. — P. 925—934.

6. Gavalda R., Ayguade E., Torres J. Jbtaning Synchronization-Free Code with Maximum
Parallelism//Technical Report LSI-96-23-R. — Barselona: Universitat Polit�cnica de Catalunya,
1996. — 96 p.

7. Griebl M., Lengauer C. Classifying Loops for Space-Time Mapping//In Proc. of the
Euro-Par 1996. Lecture Notes in Computer Science. — Berlin : Springer-Verlag, 1996. —
P. 467—474.

8. Huang C., Sadayappan P. Communication-free hyperplane partitioning of nested loops// J.
of Parallel and Distributed Computing. — 1993. — ¹ 19. —P. 90—102.

9. Kelly W., Pugh W. Minimizing communication while preserving parallelism//Proc. of the
1996 ACM International Conference on Supercomputing. — Philadelphia, USA, 1996. —
P. 52 — 60.

10. Lim W., Lam M.S. Communication-free parallelization via affine transformations//Proc. of
the Seventh workshop on languages and compilers for parallel computing. — Ithaca, NY,
USA, 1994. — P. 92—106 .

11. Lim W., Cheong G. I., Lam M. S. An affine partitioning algorithm to maximize parallelism
and minimize communication//Proc. of the 13-th ACM SIGARCH. International Confer-
ence on Supercomputing. Rhodes, Greece, 1999. — P. 228—237.

12. Lim W., Lam M. S. Maximizing parallelism and minimizing synchronization with affine
transforms// Conf. Record of the 24-th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. Paris, France, 1997. — P. 201—214.

Extracting Synchronization-free Slices in Perfectly Nested Loops

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2007. Ò. 29. ¹ 6 75

` �

13. Wolf M. E. Improving locality and parallelism in nested loops: Ph.D. Dissertation CSL-
TR-92-538. — Stanford University. Dept. Computer Science,1992.

14. Darte A., Robert Y., Vivien F. Scheduling and Automatic Parallelization.— Boston :
Birkh�user, 2000. — 294 p.

15. Feautrier P. Some efficient solutions to the affine scheduling problem, part i, one dimensional
time// International J. of Parallel Programming — 1992. — Vol. 21, ¹ 5. — Ð. 313— 348.

16. Feautrier P. Some efficient solutions to the affine scheduling problem, part ii, multidimen-
sional time// Ibid. — P. 389— 420.

17. Feautrier P. Toward automatic distribution//J. of Parallel Processing Letters. — 1994. —
Vol. 3, ¹ 4. — P. 233—244.

18. Pugh W. , Rosser E. Iteration Space Slicing and Its Application to Communication Optimiza-
tion//Proc. of the International Conference on Supercomputing, July 7—11, Vienna, Austria,
1997. — P. 221—228.

19. Kelly W., Maslov V., Pugh W. et all. The omega library interface guide// Technical Report
CS-TR-3445. — University of Maryland, College Park, USA, 1995. — 33 p.

20. Pugh W., Wonnacott D. Constraint-based array dependence analysis//ACM Trans. on Pro-
gramming Languages and Systems. — 1998. — Vol. 20, ¹ 3. — P. 635—678.

21. Weiser M. Program slices: formal, psychological, and practical investigations of an auto-
matic program abstraction method // PhD thesis. University of Michigan, Ann Arbor, MI,
1979.

22. Weiser M. Program Slicing//IEEE Transactions on Software Engineering. — 1984. —V. SE-10,
¹. 7. — Ð. 352—357.

23. Bielecki V., Siedlecki K. Finding Sources of Synchronization-free Slices in Perfectly Nested
Loops // Electronic Modeling. — 2007. — Vol. 29, ¹ 3. — P. 41—53.

24. Boulet P., Darte A., Silber G. A., Vivien F. Loop parallelization algorithms: from parallelism
extraction to code generation// Parallel Computing, 1998. — ¹ 24. — P. 421—444.

25. Collard J. F., Feautrier P., Risset T. Construction of do loops from systems of affine con-
straints. Construction of Do Loops from Systems of Affine Constraints//Parallel Processing
Letters. — 1995. — ¹5.— Ð. 421—436.

26. Quillere F., Rajopadhye S., Wilde D. Generation of efficient nested loops from polyhedra//
International J. of Parallel Programming. — 2000. — Vol. 28, ¹ 5. — P. 469—498.

27. Kelly W., Pugh W., Rosser E., Shpeisman T. Transitive Closure of Infinite Graphs and its App-
lications// Intern. J. of Parallel Programming. — 1996. — V. 24, ¹ 6. — Ð. 579—598.

28. Netlib Repository at UTK and ORNL. http://www.netlib.org/benchmark/livermorec.

Ïîñòóïèëà 07.11.06

W. Bielecki, K. Siedlecki

76 ISSN 0204–3572. Electronic Modeling. 2007. V. 29. ¹ 6

