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The analysis of time series of counts is a rapidly developing area. It has very broad application in
view of the host of integer-valued time series which cannot be satisfactorily handled within the
classical framework of Gaussian- like series. In this paper we derive recursive filters for partially
observed discrete-valued time series. These processes are regulated by thinning binomial and
multinomial operators (to be defined below).

AHaJu3 BpEMEHHBIX [10CIIEI0BATEILHOCTEH OTCYETOB — WHTCHCUBHO Pa3BUBAIOIICECS HAIpaB-
nenue. Takol aHaIn3 IMUPOKO MCIIOIB3YETCs 11l 0a30BbIX LIEIOYNCIICHHBIX BPEMEHHBIX MOCIe-
JIOBaTENILHOCTEH, ¢ KOTOPBHIMH HEJNb3s YJOBJIETBOPUTENBHO PAabOTaTh B paMKaxX KIACCHYECKHX
NOCJIeZIOBaTENbHOCTEH rayccoBa Tuna. [TomydeHbl peKypcuBHbIE (DHIBTPBI U1 YaCTUYHO HAOITHO-
JIA€MBbIX JMCKPETH3UPOBAaHHBIX BPEMEHHBIX IOCIieioBaTeNbHOCTel. [Toka3zaHo, 4To 3TH MpoLecch
PETYINPYIOTCSI TPOPEKUBAIOIMMH OMHOMUATEHBIME M TIOTMHOMHAIBHBIMU OTIEPATOPAMH.
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1. Introduction. The analysis of time series of counts is a rapidly developing
area [ 1-6] and the book by MacDonald [7]. It has very broad application in view
of the host of integer-valued time series which cannot be satisfactorily handled
within the classical framework of Gaussianlike series. Many of the statistical
which occur in practice are by their very nature discrete-valued (see [7] for more
details). These models are also adequate for the study of branching processes
with immigration [8].

In this paper we derive recursive filters for partially observed discretevalued
time series. The dynamics of these processes are regulated by thinning binomial
and multinomial operators.

The Binomial thining operator «o» [2, 5] is defined as follows. For any
nonnegative integer-valued random variable X and o € {0, 1},

X
acX =YY, o
Jj=1
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where Y1, 5, . . . is a sequence of of i.i.d. random variables independent of X,
such that P (Y, =1)=1-P(Y; =0)=o..

2. Scalar dynamics. Consider a system whose state at time kisx, € Z, .
The time index £ of the state evolution will be discrete and identified with N =
={0,1,2,..,}.

Let (Q, F, P) be a probability space upon which {v;}, {wi}, k € N are inde-
pendent and identically distributed (i.i.d.) sequences of random variables such
that, for all k£, v, € Z, has probability function ¢ and wy is Gaussian random
variables, having zero means and variances 1 (N (0, 1)). Let {F, }, k € N be the
complete filtration (that is F, contains all the P-null events) generated by {x,
X1, ..., X¢p . The state of the system satisfies the dynamics

Xy =00 (Xp)ox, +vyy. (2)

Here { X },.x 15 a stochastic process with finite state space S  of size N which
we identify, without loss of generality, with the canonical basis {e, ..., ey} of
R" . Since X, takes only a finite number of values we may write

0 (X)) =(0(€))sm (€ ) =(0 sty )0

Therefore o (X )=(a, X, ). Here (.,.) denotes the inner product in RY.
Let’s assume the process X is a Markov chain with semimartingale representa-
tion [9, 10].

X, =4X,,+M, 3)

where { M }, .y 1s a sequence of martingale increments with respect to the com-
plete filtration generated by X and 4 denotes the probability transition matrix of
the Markov chain X.

A useful and simple model for a noisy observation of x; is to suppose it is given
as a linear function of x; plus a random «noise» term. That is, we suppose that for
some real numbers ¢, and positive real numbers d}, our observations have the form

Vi =CpXp +d W “4)
We shall also write {)}}, kN for the complete filtration generated by
{yO’yl sees Vi }

Using measure change techniques we shall derive a recursive expression for
the conditional distribution of x; given ), .

Recursive estimation. Initially we suppose all processes are defined on an
«ideal» probability space (Q2, F, P); then under a new probability measure P, to
be defined, the model dynamics (2) and (4) will hold.

Suppose that under P:

1) {x;}, ke N is an i.i.d. sequence with density function ¢ (x) with support
inz.;
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2) {yx}, ke N isanii.d. N (0, 1) sequence with density function

|
y()=—=e"".
NG
-1
For /=0, ko _V{do (7o =¢o¥))) and for /=1, 2, ... define
dow ()
7, O (e, Xp)oxi ) w(d; (v =¢px) (5)
did(x)w(y;)
_ k__
A =]Tr- ©)
1=0

Let G, be the complete o-field generated by {xo, xi, ..., xx, (@, X()oxg,..
(O, Xy )oXy, Yo, Y1y s Yiy forkeN.
Lemma 1. The process {A« }, k € Nis a P-martingale with respect to the fil-
tration {G, }, ke N. B o
Proof.Since At is G,-measurable E [A,,,|G; 1= A E [A,1|G; ]. There-

fore we must show that E [A |G, ]=1:

E [Xk lgk]:E{ O(x g —<a, Xk>°xk)\v(dl:+l-l(yk+l T Ch1X k41 ))gk} _

dk+l¢(xk+l)\v(yk+l)
:{ O (X —(at, Xk>oxk)E{ \y(d,;il(ykﬂ —CraX ))‘gk X, l}gk} )

O (xXpi1) gV (Vi)
Now,
E |: \4 (d;il (yk+1 “Cr1X a1 ))‘gk 5xk+l:| _
di gV (Vi)
d: (y—c, . .x
ZJ‘ Y (din (¥ = kH))\V(y)dy:l
R dk+lw (y)
and

E|:¢(xk+1 —<a, Xk>oxk)gk:|
¢ (xpip)

=E|: Z ¢(x_<(l, Xk>0xk)¢(x)gk:|= Z(I)(”):l

xeZ, (I) (X) uel,
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Define P on {Q,F} by setting the restriction of the Radon—Nykodim deriv-

ative d—lj to G, equal toA . Then:
dP

Lemma 2. {v;}, k€ N is an i.i.d. sequence with density function ¢ (x) with

support in Z, and {w;}, ke N are 1.i.d. N(0, 1) sequences of random variables,
where

A
Vi =Xy —<0L, Xk>°xk)a

A _
Wi :(dkl(yk —CpX )

Proof Suppose f, g: R— R are «test» functions (i.e. measurable func-
tions with compact support). Then with £ (resp. £) denoting expectation under P
(resp. P) and using Bayes’ Theorem [9, 10]

T\kﬁ [Xk+1f(vk+1)g(wk+1 )‘gk ] _
AKE [Mj|Gy ]
=E [Xk+1f(vk+1)g(wk+l )\gk 1,

where the last equality follows from Lemma 1. Consequently
E[f(via) g Wiy )\gk]=E [Xk+1f(vk+1)g(wk+l )\gk]z
_ E{ O (v =@ X,)ox )W (dis (Vi —Coar¥in ))} y

do (X )V (Viar)

X f(Xpp —<°‘, Xk>°xk)g(d/:+11(J’k+1 T Ch1X k41 ))\gk]=

=E[ O (X —<0«, Xk>oxk)
¢ (xpip)

Elf (Vi) & Wiy )‘gk 1=

S (X —<(l, Xk>°xk)x

— d;! —Cp X _
xE { LACTRILC/R Rl STL IS ))g(dlml-] (Vir1 =CraXpan ))\gk > X 4l :|gk }
eV (Vis1)

Now
E { N (d12+11 (Vir1 —Cha1Xk41))

8 (d/:il(ykﬂ “Cr1 Xk ))\gk > xk+li| =
dp gV (Vi)

N W (din (¥ =exp4)
R

diqv () W(y)g(d;il(y_ckﬂxkﬂ ) dy =H£\|l(u)g(u) du
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and
E{q)(xkﬂ e Xk>oxk)f(xk+1 —(a, Xy)ox,))| g/j:
¢ (xgi1)
_ — X, Vo
=E{z Pt X0y (1) (x—(a, Xk>oxk)gk}= XIGUE)
xeZ, (I)(X) xeZ,
Therefore E [f (Vi) 8wyt )| Gi 1= Zd)(z)f(z)jw(u)g(u)du and the lemma is
XeZ, R
proved.
Using Bayes’ Theorem [10]
E[Xkl(xk Zx)Xk‘yk] (7
Ell(x, =x)X,|),. 1= —
[{(x; =x) k‘ ] E[Ak\yk]

where E (resp. E) denotes expectations with respect to P (resp. P). Consider the
unnormalized, conditional expectation which is the numerator of (7) and write

E[A(xy =) XV 126, (x) =(g5 (), g (X)) ®)

If p.(.) denotes the normalized conditional density, such that E[/(x;, =
=x) X |V 1= py (x), then from (7) we see that

-1
Pk(x)ZQk(x)[qu(Z)} forxeZ, ,keN.

Then we have the following result.
Theorem 1. The measure-valued process ¢ satisfies the recursion

q+1 (x):A ZB(va)qk(Z)a

zel,

where B (z,x) is a diagonal matrix with entries

-1 _ Z
V(A (e —ex)) (Zj“? o,y
r

oy 2o

Proof Inview of (3), (5) and (6)

E [Aihiial(x g =X) Xy Vi l=

_E| A, o(x—(a, Xk>oxk)\|/(d,:1(yk+l_ck+1x))¢
dk+1¢‘ (X)W(ykﬂ)
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-1 _ N o
_ \V(dkﬂ(ykﬂ CkHX))ZE Ak(l) (x —a, oxk)<Xk aei>‘yk+l]Aei =
dp gV (Vi) i=l1

_ V(e (D =€x¥))
diaV (Vi)

N X
X;E{Ak 2‘1’ (x—r) (x:)a;(l_ai)xk_r <Xkaei> D}kﬂ ]:|Aei =

=0

_Vv (den (Vist —CaiX)) «
dp gV (Vi)

N o z
x;E[Ak Z Z(I) (x—r)(ijaf(l—oci)z_rl(xk =z) (X, ,ei>yk]}Aei.

zelZ, r=0

The last equality follows from the fact that x;.; has distribution ¢ and is inde-
pendent of everything else under P. Also, note that given y;+; we condition only
on ), to get an expression similar to notation (8), that is,

E A d(xpy =) X 0| Ve 1=

1 _ z z
:\V(d (yk+1 Cx))%:<ZZd)(x_r)(rja;’(l—qi)z—qu(z)el->Ael.:
zeZ, r=0

Ay (¥ii) i=1

=4 ZB (z,x)q;(2),

zeZ,

where B (z,x) is a diagonal matrix with entries

\V(d_l(yk+1—CX)) Z (Zja;(l_ai)z—r.
r

oy &

Which finishes the proof.

Vector dynamics. Consider a system whose state at time k=0, 1, 2, ..., is
X, €Z!" and which can be observed only indirectly through another process
Y, eRY.

Let (Q, F,P)be a probability space upon which ¥, and W, are sequences of
random variables such that W, is normally distributed with means 0 and
covariance identity matrices / ;,; and V} has probability distribution ¢ with sup-
portin Z"". Assume that Dy, k> 0, are non singular matrices. Let {F, }, k€ N, be
the complete filtration generated by {Xo, X, ..., X;}.
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Now we wish to generalize the operator o to vector-valued random variables
with non-negative integer-valued components.
For any vector X = (X ' .., X" in Z" and any vector o’ =(a.},..,a’)
i i _
such thata; >0and ) o', =1define
i

J=1

a'BX" =(0, DX, .0, DX :{ZY{], ...,ZY,;].} , )
Jj=1

where Z,, i, { =1, ...,m, are non-negative, integer-valued random variables such

m

that > Z; =X'. Foreachi, (, Y}, ..,Y,,, are ii.d. nonnegative, integer-valued
¢=1

random variables with probability function p’.

Let

A=(a, .,a"™), ABX =3 o'TX". (10)

i=l

One possible interpretation of this model is that X =(X', .., X™)" repre-
sents a population composed of m distinct groups of, say, cells. Some time later,
each cell in the population, regardless to which group it belongs, can mutate and
divide itself into a number of new cells of any of the m types. For instance, a cell
of type 1 may mutate with probability o } to produce through division a new gen-

Z
eration of cells of type 2. Let OLIZQX : :zY ) ; 1s the (random) number of new
j=1
cells of type 2 with Z; parents of typel. In other words, forj =1, ..., Z;, the j-th
parent cell of type 1 gave birth to ¥, ; new cells of type 2. Here Y ) ; is arandom

variable with probability function p12with support in Z, .
The state and observations of the system are given by the dynamics

Y, =C, X, +D, W, eR". (12)

Here C; is a matrix of appropriate dimensions and 4,JX, is defined in (10).

We write again {)), }, k€N, for the complete filtration generated by the
observed data {Y,, Y1, ..., Y;} up to time k. Using measure change techniques
we shall derive a recursive expression for the conditional distribution of X
given ).
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Recursive estimation. Initially we suppose all processes are defined on an
«ideal» probability space (Q2, F, P); then under a new probability measure P, to
be defined, the model dynamics (11) and (12) will hold.

Suppose that under P:

1) {X;}, ke N, is an i.i.d. sequence with probability function ¢ (x) defined
onZ7;

2) {Yi}, keN, is an 1id. N (0, 1,,,) sequence with density function

1 —yy/2
v(y)= e
For any square matrix B write | B | for the absolute value of'its determinant.

-1
For /=0, X, _V Dy (¥ =CoXo) and for /=1, 2, ... define

‘DO‘\V(YO)
y _0 (X, ~A,@X )y (D] (Y, -C, X))
D6 (X )y (Y))

_ k —
Ak :H }\41.
1=0

Let {G, } be the complete o-field generated by {X, X1, ..., X, Yo, Y1, ..., YV}

for ke N.
The process {A, }, k € N, is an P-martingale with respect to the filtration {G, }.
Define P on {Q), F} by setting the restriction of the Radon—Nykodim de-

b

rivative ZZ: to G, equal to A, . It can be shown that on {Q, F} and under P, W, is

normally distributed with means 0 and covariance identity matrix /,,;, and V
has probability function ¢ defined on Z”’ where

Vi SX g —4,DX ., W éD/ZI(Yk —C X;),
write
E[AI (x, =x) X | Vi 1=4,(x).
Then we have the following result.
Theorem 2. For k>0
Y (Dt Yy =CraX) |
1Dy | W (Yiir)

23 3 1 Jebents

ueZMi=l zi4. 4zl =u’i=l \ 21~

i+ (x)=
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r

¢ X—Z[Zyb,---,iy;,} Hﬂp2<yz‘,-)qk(u>.
i=1\_j=1 j=1

ir=1 j=1

P r o o f. The proof is similar to the scalar case and is skipped.
A sampling observation model. The state of the system is again given by

the dynamicsin (11). Write N, = ZX ,’€ and IT (V, ) for the set of all partitions of
i=1

N, into m summands; thatis,x e [T(N, )if x =(x1, x?

, ..., x™)where each x' isa
non-negative integer and x' +x*+.+x" =N .- In this section we assume that
the total number of individual N, is approximately known but it is practically
very difficult to measure directly their distribution between the m types. There-
fore the population is sampled by withdrawing, (with replacement), at each time
k, n individuals and observing to which type they belong. That is, at each time k a
sample

Y, =Y}, Y5 . Y =T1(n)

is obtained, where II (n) is the set of partitions of n.
We assume that

; xl yl x2 yz o o
BRI

Clearly this sequence of samples, Y (0), Y (1), Y (2), ... enables us to revise
our estimates of the state Xj.

Recursive estimates. Initially we suppose all processes are defined on an
«ideal» probability space (Q2, F, P); then under a new probability measure P, to
be defined, the model dynamics (11) and (13) will hold.

Suppose that under P:

1) {Xi}, ke N, is an i.i.d. sequence with probability function & (x) defined
on Z",

2) {Y;}, ke N, is an 1.i.d. sequence such that fory € I1 (n),

P(Y, =ygk):(y1 yzny'"j(:n)

For /=0, A, =1and for /=1, 2, ... define

N I 2\ m k
x, :f(Xz AH@XH)mn (ij (XkJ (ij | A, :Hxl‘
§(X)) Ny Ny Ny
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Let {G, } be the complete o-field generated by {X, X, ..., X, Yo, Y1, ..., YV}
for k € N. The process {A, }, k € N, is an P-martingale with respect to the filtra-
tion {G, }.

Define P on {Q), F} by setting the restriction of the Radon—Nykodim de-

rivative Z’Ii to G, equalto A,. It can be shown that on {Q, 7} and under P, V; has

A
probability function £(x) defined on Z' where V., =X ., —4,9X, and (13) is
true. For 7 €lI(Njw1) write gy (7)) =E [Ay (X sy =7 Vi1 1-
Note that

YUK,y =r)=1

rell(N})
so that

Z(]k+1(’”) =E [Xkﬂ Ve 1-

rell(Ny)

We then have the following recursion.
Theorem 3.1f ¥, =(Y,, Y/, .Y, )=(y", y* ..,»")€II(N,),

| yl ) yZ ym
k - - e ees| T
Nk Nk Nk

> 5 3 7 ehtwnts

sel‘I(Nk Di=l zi4 4zl =5 i=l \Z]

—z[zy;,, ...,zy;,} [T 040,00
i1 \_j=1 =1 i0=1 j=1

(Note we take 0° = 1.)
Proof.

Qk(r):E[XkI(Xk :r)‘yk]:
=E[Ad (X =)V Yy =0 y2 ey ™=
:E[Kk—IXkI(Xk :r)‘yk—l’yk :(yl, yz,m,ym)]:
r! v r? 7 r" AN E(r—-A4,9X,_))
=m"| —| | —| | — A =) SV TR kL) -
2 (2] ) moen st
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1 2 m
= mn e e | — E [Ak—l Z 5(7" _Ak ®S) I(Xk—l :S)‘ yk—l ] s
(Nk Nk Nk sell(Ny_y)

using the definition of the operator & in (9) and (10) yields the result.
Remark.

P(X, =) V) =ELI(X, =r)| Y ]=— )

> qils)

sell(N )

To obtain the expected value of X given the observations )}, we consider
the vector of values r=r"', r?, ... r ™) for any » € I1 (V). Then

PIRAGL

_ rell(Ny)

B Z q;(s) .

sell(Ny)

E[X |V ]

AHati3 4acoBHX MOCIIZOBHOCTEH BiJUIIKIB — HAmpsiM, 110 IHTEHCUBHO PO3BUBAETHCS. TaKuii
aHai3 NIMPOKO BUKOPUCTOBYETHCS JUIsi 0A30BUX IIJIOYUCETBHUX YACOBHX MOCITIJOBHOCTEH, 3
SIKIMH HEe MOYKHA 33J0BUIFHO MPAIIOBATH Y paMKax KJIACHYHUX MOCIiTOBHOCTEH raycoBa THILY.
OTpUMaHO PeKypCHBHI (IIBTPH IS YACTKOBO CIIOCTEPIraEMUX AUCKPETH30BAHUX YACOBHX MO~
ciimoBHocTel. [TokazaHo, IO I TIPOILIECH PETrYJIOIOTHCS MPOPIKYIYUMHU OIHOMIaIbHUMHU Ta
MOJIIHOMIaJIbHUMH OIepaTOpaMHu.
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