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The analysis of time series of counts is a rapidly developing area. It has very broad application in

view of the host of integer-valued time series which cannot be satisfactorily handled within the

classical framework of Gaussian- like series. In this paper we derive recursive filters for partially

observed discrete-valued time series. These processes are regulated by thinning binomial and

multinomial operators (to be defined below).

Àíàëèç âðåìåííûõ ïîñëåäîâàòåëüíîñòåé îòñ÷åòîâ — èíòåíñèâíî ðàçâèâàþùååñÿ íàïðàâ-

ëåíèå. Òàêîé àíàëèç øèðîêî èñïîëüçóåòñÿ äëÿ áàçîâûõ öåëî÷èñëåííûõ âðåìåííûõ ïîñëå-

äîâàòåëüíîñòåé, ñ êîòîðûìè íåëüçÿ óäîâëåòâîðèòåëüíî ðàáîòàòü â ðàìêàõ êëàññè÷åñêèõ

ïîñëåäîâàòåëüíîñòåé ãàóññîâa òèïà. Ïîëó÷åíû ðåêóðñèâíûå ôèëüòðû äëÿ ÷àñòè÷íî íàáëþ-

äàåìûõ äèñêðåòèçèðîâàííûõ âðåìåííûõ ïîñëåäîâàòåëüíîñòåé. Ïîêàçàíî, ÷òî ýòè ïðîöåññû

ðåãóëèðóþòñÿ ïðîðåæèâàþùèìè áèíîìèàëüíûìè è ïîëèíîìèàëüíûìè îïåðàòîðàìè.

K e y w o r d s: filtering, time series, change of measre, binomial thinning.

1. Introduction. The analysis of time series of counts is a rapidly developing

area [1–6] and the book by MacDonald [7]. It has very broad application in view

of the host of integer-valued time series which cannot be satisfactorily handled

within the classical framework of Gaussianlike series. Many of the statistical

which occur in practice are by their very nature discrete-valued (see [7] for more

details). These models are also adequate for the study of branching processes

with immigration [8].

In this paper we derive recursive filters for partially observed discretevalued

time series. The dynamics of these processes are regulated by thinning binomial

and multinomial operators.

The Binomial thining operator «�» [2, 5] is defined as follows. For any

nonnegative integer-valued random variable X and ��� {0, 1},

a X Y j
j

X

� �

�

�

1

,
(1)
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where Y1, Y2, . . . is a sequence of of i.i.d. random variables independent of X,

such that P Y P Yj j( ) ( )� � � � �1 1 0 �.

2. Scalar dynamics. Consider a system whose state at time k is xk �
�

Z .

The time index k of the state evolution will be discrete and identified with � =

= {0, 1, 2, ..., }.

Let ( , , )	 � P be a probability space upon which {vk}, {wk}, k�� are inde-

pendent and identically distributed (i.i.d.) sequences of random variables such

that, for all k, vk �
�

� has probability function 
 and wk is Gaussian random

variables, having zero means and variances 1 (N (0, 1)). Let {�k }, k�� be the

complete filtration (that is �
0

contains all the P-null events) generated by {x0,

x1, ..., xk}. The state of the system satisfies the dynamics

x X x vk k k k� �
� �

1 1
� ( )� . (2)

Here{ }X k k��
is a stochastic process with finite state space S X of size N which

we identify, without loss of generality, with the canonical basis {e1, ..., eN} of

�
N

. Since Xn takes only a finite number of values we may write

� � � � � ���( ) ( ( ),..., ( )) ( ,..., ))X e ek N N� � �
1 1

�

Therefore � ��( ) ,X Xk k� . Here . ,. denotes the inner product in �
N

.

Let’s assume the process X is a Markov chain with semimartingale representa-

tion [9, 10].

X AX Mk k k� �
�1

(3)

where{ }M k k��
is a sequence of martingale increments with respect to the com-

plete filtration generated by X and A denotes the probability transition matrix of

the Markov chain X.

A useful and simple model for a noisy observation of xk is to suppose it is given

as a linear function of xk plus a random «noise» term. That is, we suppose that for

some real numbers ck and positive real numbers dk our observations have the form

y c x d wk k k k k� � . (4)

We shall also write {�k }, k�� for the complete filtration generated by

{ , ,..., }y y yk0 1
.

Using measure change techniques we shall derive a recursive expression for

the conditional distribution of xk given �k .

Recursive estimation. Initially we suppose all processes are defined on an

«ideal» probability space ( , , )	 � P ; then under a new probability measure P, to

be defined, the model dynamics (2) and (4) will hold.

Suppose that under P:

1) {xk}, k�� is an i.i.d. sequence with density function 
 ( )x with support

in �
�
;
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2) {yk}, k�� is an i.i.d. N (0, 1) sequence with density function

�

�

( ) .
/y e y

�
�1

2

2
2

For l = 0, �
�

�

0
0

1

0 0 0

0 0

�

�
�

( ( ))

( )

d y c x

d y
and for l = 1, 2, ... define

�


 �� ��


 ��

l
l l l l l l l

l l l

x X x d y c x

d x y
�

� �
� �

�

( , ( ( ))

( ( )

1 1

1
�

,
(5)

�k

l

k

l�

�

��

0

.
(6)

Let �k be the complete �-field generated by {x0, x1, ..., xk , �� , , ...X x
0 0

�

..., , ,�� X xk k� y0, y1, ..., yk} for k��.

Lemma 1. The process {�k }, k�� is a P-martingale with respect to the fil-

tration {�k }, k��.

P r o o f . Since �k is �k -measurable E Ek k k k k[ ] [ ]� � �
� �

�
1 1
� � . There-

fore we must show that E k k[ ]�
�

�
1

1� :

E E
x X x d y c x

k k
k k k k k k k

[ ]
( , ( ( )

�


 �� ��

�

� �

�

� � �

�

� �

1

1 1

1

1 1 1
�

� )

( ( )d x yk k k
k

� � �

�

�

�

�

�

�
�

1 1 1

 ��

�

�

� �
�

�

�

�

� � �E
x X x

x
E

d y c xk k k

k

k k k k
 �� �


 �

�( ,

(

( ( ))1

1

1

1

1 1 1
�

d y
x

k k
k k k

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1

1

� ( )

,� � .

Now,

E
d y c x

d y
xk k k k

k k
k k

�

�

( ( ))

( )

,
�

�

� � �

� �

�

��

�

�

�

�

�
�

1

1

1 1 1

1 1

1
�

�

�

�
�

�

� �

�

�

�

�

�

( ( ))

( )

( )
d y c x

d y
y dyk k k

k

1

1

1 1

1

1

�

and

E
x X x

x
k k k

k
k


 �� �


 �

( ,

(

�

�

��

�

�

�

�

�
�

1

1

�
�

�

��

�

�

�

�

�
� �

� �
� �

� �E
x X x

x
x uk k

x
k

u


 �� �


 �


 


( ,

(

( ) ( )
�

� �

� 1.
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Define P on {	,�} by setting the restriction of the Radon—Nykodim deriv-

ative
dP

dP
to �k equal to � k . Then:

Lemma 2. {vk}, k�� is an i.i.d. sequence with density function 
 �(x with

support in �
�

and {wk}, k�� are i.i.d. N(0, 1) sequences of random variables,

where

v x X xk k k k� �
� �

1 1

�

( ,�� �� ,

w d y c xk k k k k� �
��

( ( )
1

.

P r o o f. Suppose f g, : � �� are «test» functions (i.e. measurable func-

tions with compact support). Then with E (resp. E) denoting expectation under P
(resp. P) and using Bayes’ Theorem [9, 10]

E f v g w
E f v g w

E
k k k

k k k k k

k

[ ( ) ( ) ]
[ ( ) ( ) ]

[
� �

� � �

�
1 1

1 1 1
�

��

�

�

� k k�

�

1 � ]

�
� � �

E f v g wk k k k[ ( ) ( ) ]� 1 1 1
� ,

where the last equality follows from Lemma 1. Consequently

E f v g w E f v g wk k k k k k k[ ( ) ( ) ] [ ( ) ( ) ]
� � � � �

� �
1 1 1 1 1

� ��

�

� �
� �

�

� � �

�

E
x X x d y c x

d x
k k k k k k k

k


 �� ��


 �

( , ( ( ))

(

1 1

1

1 1 1

1

�

� ( )yk�

�

�

�

�

�

�
�

1

� � � �
� �

�

� � �
f x X x g d y c xk k k k k k k k( , ( ( )) ]

1 1

1

1 1 1
�� �� �

�

�

� �

�

�

�

�

�

�
E

x X x

x
f x X xk k k

k
k k k


 �� �


 �

�� �

( ,

(

( ,
1

1

1

�
�

�

�
�

�

� � �

� �

�

�

�
E

d y c x

d y
g d yk k k k

k k
k k

�

�

( ( ))

( )

( (
1

1

1 1 1

1 1

1

1

1
�

�

�

�

�

�

�

�

�

�� � �
c x xk k k k k1 1 1

)) ,� � .

Now

E
d y c x

d y
g d yk k k k

k k
k k

�

�

( ( ))

( )

( (
�

�

� � �

� �

�

�

�

�

�
1

1

1 1 1

1 1

1

1

1
c x xk k k k� � �

�

�

�

�

�

�
�

1 1 1
)) ,�

�

�

�
�

�

�

�

�

�

� �

�

�

�

( ( ))

( )

( ) ( (
d y cx

d y
y g d y c xk k

k
k k k

1

1

1

1

1

1

1 1
)) ( ) ( )dy u g u du

� �

� �
� �
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and

E
x X x

x
f x X xk k k

k
k k k k


 �� �


 �

�� �

( ,

(

( ,
�

�

�

�

�

�

�

�

�

�

�
�

1

1

1

�
� �

�

�

�

�

�

�

�

�

�
�

�
�

�E
x X x

x
x f x X x

x

k k
k k k

�


 �� �


 �


 � �� �

( ,

(

( ( ,
�

� � 
 �( ( )z f z
x�

�

�

�

.

Therefore E f v g w z f z u g u duk k k
x

[ ( ) ( ) ] ( ( ) ( ) ( )
� �

�

�

�

� �1 1
� 
 � �

� �

and the lemma is

proved.

Using Bayes’ Theorem [10]

E I x x X
E I x x X

E
k k k

k k k k

k k

[ ( ) ]
[ ( ) ]

[ ]

� �

�

�
�

�

�

�

,
(7)

where E (resp. E) denotes expectations with respect to P (resp. P). Consider the

unnormalized, conditional expectation which is the numerator of (7) and write

E I x x X q x q x q xk k k k k k k
N

[ ( ) ] ( ) ( ( ), ..., ( ))� � � � ��
1

. (8)

If pk (.) denotes the normalized conditional density, such that E I xk[ ( �

� �x X p xk k k) ] ( )� , then from (7) we see that

p x q x q zk k k
z

( ) ( ) ( )�

�

�
�

�

�
��

�1

for x�
�

� , k�� .

Then we have the following result.

Theorem 1. The measure-valued process q satisfies the recursion

q x A z x q zk
z

k�

�

�

�

�1
( ) ( , ) ( )

�

B ,

where B ( , )z x is a diagonal matrix with entries

�

�


 � �

( ( ))

( )

( ) (
d y cx

d y
x r

z

r
k

k r

z

i
r

i

�

�

� �

�

�
�

 

!

"

#

$ ��

1

1

1 0

1 )
z r�

.

P r o o f. In view of (3), (5) and (6)

E I x x Xk k k k k[ ( ) ]� �
� � � �

� �1 1 1 1
�

�

� �
�

�

� �

�

E
x X x d y c x

d x y
k

k k k k k

k k

�


 �� ��


 ��

( , ( ( ))

( (

�
1

1

1 1

1 �

� �
�

�

�

�

�

�

�
�

1

1 1

)

( ]
 �%&x X Mk k k�
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�

�

�
�

�

� �

� � �

�

�

�


 �

( ( ))

( )

(
d y c x

d y
E x xk k k

k k i

N

k i k
1

1

1 1

1 1 1

� � � X e Aek i k i, ]�
�

�
1

�

�

�
�

�

� �

� �

�

�

( ( ))

( )

d y c x

d y
k k k

k k

1

1

1 1

1 1

� �
�

 

!

"

#

$ �

� �

�

� �

i

N

k

r

x
k

i
r

i
x r

k i kE x r
x

r
X e

k
k

1 0

1� 
 � �( ) ( ) , �
�

�

�

�

�

�

�
�

1
] Aei

�

�

�
�

�

� �

� �

�

�

( ( ))

( )

d y c x

d y
k k k

k k

1

1

1 1

1 1

� �
�

 

!

"

#

$ � �

� � �

�

� � �

�
i

N

k
z r

z

i
r

i
z r

kE x r
z

r
I x

1 0

1�

�


 � �( ) ( ) ( z X e Aek i k i) , ]�
�

�

�

�

�

�
.

The last equality follows from the fact that xk+1 has distribution 
 and is inde-

pendent of everything else under P. Also, note that given yk+1 we condition only

on �k to get an expression similar to notation (8), that is,

E I x x Xk k k k[ ( ) ]�
� � � �

� �
1 1 1 1

�

�

�

�
�

 

!

�

�

� � � �

� � �

�

�

�




( ( ))

( )

( )
d y cx

d y
x r

z

r
k

k i

N

z r

z1

1

1 1 0�

"

#

$ � �
�

� � �i
r

i
z r

k i iq z e Ae( ) (1

�

�
�

�A z x q z
z

k
�

B ( , ) ( ),

where B ( , )z x is a diagonal matrix with entries

�

�


 � �

( ( ))

( )

( ) (
d y cx

d y
x r

z

r
k

k r

z

i
r

i

�

�

� �

�

�
�

 

!

"

#

$ ��

1

1

1 0

1 )
z r�

.

Which finishes the proof.

Vector dynamics. Consider a system whose state at time k = 0, 1, 2, ..., is

X k
m

�
�

� and which can be observed only indirectly through another process

Yk
d

�� .

Let ( , , )	 � P be a probability space upon which Vk and Wk are sequences of

random variables such that Wk is normally distributed with means 0 and

covariance identity matrices I d d� and Vk has probability distribution 
 with sup-

port in �
�

m
. Assume that Dk, k ' 0, are non singular matrices. Let {�k }, k��, be

the complete filtration generated by {X0, X1, ..., Xk}.
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Now we wish to generalize the operator � to vector-valued random variables

with non-negative integer-valued components.

For any vector X = (X 1
, ..., X m

)� in �
�

m
and any vector �� � �

i i
m
i

� �( ,..., )
1

such that � j
i
(0 and � j

i

i
� �1define

�� � �
i i i i

m
i i

j
i

j

Z

mj
i

j

X X X Y Y

i

) � ) ) � �

� �

�( , ..., ) , ...,
1 1

1

1

1

Z m
i

�

�

 

!

!

"

#

$

$

�

, (9)

where Zi
� , i, � �1, ..., m, are non-negative, integer-valued random variables such

that Z Xi
m

i
�

��

� �

1

. For each i, �, Y Yi
m
i

� �1
, ..., , are i.i.d. nonnegative, integer-valued

random variables with probability function * �
i
.

Let

A m
� ( , ..., ),� �

1 A X Xi

i

m
i

) � )

�

��

1

.
(10)

One possible interpretation of this model is that X X X m
� �( , ..., )

1
repre-

sents a population composed of m distinct groups of, say, cells. Some time later,

each cell in the population, regardless to which group it belongs, can mutate and

divide itself into a number of new cells of any of the m types. For instance, a cell

of type 1 may mutate with probability�
2

1
to produce through division a new gen-

eration of cells of type 2. Let �
2

1 1

2

1

1

2

1

) �

�

�X Y j
j

Z

is the (random) number of new

cells of type 2 with Z
2

1
parents of type1. In other words, for j = 1, ..., Z

2

1
, the j-th

parent cell of type 1 gave birth to Y j2

1
new cells of type 2. Here Y j2

1
is a random

variable with probability function *
2

1
with support in �

�
.

The state and observations of the system are given by the dynamics

X A X Vk k k k
m

� � �
� ) � �

1 1
� , (11)

Y C X D Wk k k k k
d

� � �� . (12)

Here Ck is a matrix of appropriate dimensions and A Xk k) is defined in (10).

We write again {�k }, k��, for the complete filtration generated by the

observed data {Y0, Y1, ..., Yk} up to time k. Using measure change techniques

we shall derive a recursive expression for the conditional distribution of Xk

given �k .
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Recursive estimation. Initially we suppose all processes are defined on an

«ideal» probability space ( , , )	 � P ; then under a new probability measure P, to

be defined, the model dynamics (11) and (12) will hold.

Suppose that under P:

1) {Xk}, k��, is an i.i.d. sequence with probability function 
 ( )x defined

on �
�

m
;

2) {Yk}, k��, is an i.i.d. N (0, I d d� ) sequence with density function

�

�

( )

( )
/

/y e
d

y y
�

� �1

2
2

2
.

For any square matrix B write | B | for the absolute value of its determinant.

For l = 0, �
�

� %

0

0

1

0 0 0

0 0

�

�
�

( ( )

)

D Y C X

D Y
and for l = 1, 2, ... define

�


 �


 �� %

l
l l l l l l l

l l l

X A X D Y C X

D X Y
�

� ) �
� �

�

( ) ( ( )

( )

1 1

1

,

� �k l
l

k

�

�

�

0

.

Let {�k } be the complete �-field generated by {X0, X1, ..., Xk, Y0, Y1, ..., Yk}

for k��.

The process {�k }, k��, is an P-martingale with respect to the filtration {�k }.

Define P on {	,�} by setting the restriction of the Radon—Nykodim de-

rivative
dP

dP
to �k equal to �k . It can be shown that on {	,�} and under P, Wk is

normally distributed with means 0 and covariance identity matrix I d d� , and Vk

has probability function 
 defined on �
�

m
where

V X A Xk k k k� �
� � )

1 1

�

, W D Y C Xk k k k k� �
�� 1

( ) ,

write

E I x x X q xk k k k n[ ( ) ] ( )� � �� .

Then we have the following result.

Theorem 2. For k ' 0

q x
D Y C x

D Y
k

k k k

k k
�

�

�

� �

� �

�

�

�
1

1

1

1 1

1 1

( )
( ( )

)

�

� %

�

�

 

!
!

"

#� � � � � �
�

� � � �

u i

m

z z u i

m
k
i

i
m
i

m i
m
i i

x

z z
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P r o o f. The proof is similar to the scalar case and is skipped.

A sampling observation model. The state of the system is again given by

the dynamics in (11). Write N Xk k
i

i

m

�

�

�

1

and Ï (N k ) for the set of all partitions of

N k into m summands; that is, x N k�+ ( ) if x x x x m
� ( , , ..., )

1 2
where each x i

is a

non-negative integer and x x x Nm
k

1 2
� � � �... . In this section we assume that

the total number of individual N k is approximately known but it is practically

very difficult to measure directly their distribution between the m types. There-

fore the population is sampled by withdrawing, (with replacement), at each time

k, n individuals and observing to which type they belong. That is, at each time k a

sample
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P Y y X x
n

y y y

x

N

x

N
k k m

k

y

k

( )
...

� � �
�

 

!

"

#

$

�

 

!

"

#

$

�

 

!

"

#

$
1 2

1 2

1 y m

k

y
x

N

m2

...
�

 

!

"

#

$ . (13)

Clearly this sequence of samples, Y (0), Y (1), Y (2), ... enables us to revise

our estimates of the state Xk.

Recursive estimates. Initially we suppose all processes are defined on an

«ideal» probability space ( , , )	 � P ; then under a new probability measure P, to

be defined, the model dynamics (11) and (13) will hold.

Suppose that under P:

1) {Xk}, k��, is an i.i.d. sequence with probability function � ( )x defined

on �
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;
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Let {�k } be the complete �-field generated by {X0, X1, ..., Xk, Y0, Y1, ..., Yk}

for k��. The process {�k }, k��, is an P-martingale with respect to the filtra-

tion {�k }.

Define P on {	,�} by setting the restriction of the Radon—Nykodim de-

rivative
dP

dP
to�k equal to �k . It can be shown that on {	,�} and under P, Vk has

probability function �( )x defined on �
�

m
whereV X A Xk k k k� �

� � )
1 1

�

and (13) is

true. For r �Ï(Nk+1) write q r E I X rk k k k� � � �
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We then have the following recursion.
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(Note we take 0
0

= 1.)

P r o o f .
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using the definition of the operator ) in (9) and (10) yields the result.

Remark.
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To obtain the expected value of Xk given the observations �k we consider

the vector of values r = r 1
, r 2

, ..., r m
) for any r � Ï (Nk). Then
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Àíàë³ç ÷àñîâèõ ïîñë³äîâíîñòåé â³äë³ê³â — íàïðÿì, ùî ³íòåíñèâíî ðîçâèâàºòüñÿ. Òàêèé

àíàë³ç øèðîêî âèêîðèñòîâóºòüñÿ äëÿ áàçîâèõ ö³ëî÷èñåëüíèõ ÷àñîâèõ ïîñë³äîâíîñòåé, ç

ÿêèìè íå ìîæíà çàäîâ³ëüíî ïðàöþâàòè ó ðàìêàõ êëàñè÷íèõ ïîñë³äîâíîñòåé ãàóñîâa òèïó.

Îòðèìàíî ðåêóðñèâí³ ô³ëüòðè äëÿ ÷àñòêîâî ñïîñòåð³ãàºìèõ äèñêðåòèçîâàíèõ ÷àñîâèõ ïî-

ñë³äîâíîñòåé. Ïîêàçàíî, ùî ö³ ïðîöåñè ðåãóëþþòüñÿ ïðîð³æóþ÷èìè á³íîì³àëüíèìè òà

ïîë³íîì³àëüíèìè îïåðàòîðàìè.
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