
Lakhdar Aggoun
Department of Mathematics and Statistics,
Sultan Qaboos University
(P.O.Box 36, Al-Khod 123, Sultanate of Oman,
E-mail: laggoun@squ.edu.om),
Lakdere Benkherouf
Department of Statistics and Operations
Research College of Science, Kuwait University
(P.O.Box 5969, Safat 13060, Kuwait,
E-mail: lakdereb@kuc01.kuniv.edu.kw)

Filtering of an Inventory Model
with a Multinomial Thinning Operator

(Recommended by Prof. E. Dshalalow)

In this paper a multivariate discrete-time, discrete-state stochastic inventory model for perishable
items is discussed. This model draws on earlier works by the authors and the fractional thinning
operator of Steutel and van Harn. Items in stock are assumed to belong to one of M possible cate-
gories (representing qualities). At each time t items in the stock may stay in the same class, move

to one of the Ì�1 classes or perish. The movement between classes is assumed to be regulated by
a multinomial thining operator (to be defined below) which is dependent on some vector-valued
parameter process. Recursive estimates for the parameter process are proposed for three possible
scenarios.

Ðàññìîòðåíà ñòîõàñòè÷åñêàÿ ìîäåëü óïðàâëåíèÿ çàïàñàìè ñ ìíîãèìè ñëó÷àéíûìè ïåðå-
ìåííûìè, äèñêðåòíàÿ âî âðåìåíè è ïðîñòðàíñòâå, äëÿ ñêîðîïîðòÿùèõñÿ òîâàðîâ. Ìîäåëü
ïîñòðîåíà íà îñíîâå ïðåäûäóùèõ ðàáîò àâòîðîâ ñ èñïîëüçîâàíèåì äðîáíîãî îïåðàòîðà
ðàçðåæåíèÿ Ñòåíòåëà è Âàí Õàðíà. Ïðåäïîëàãàåòñÿ, ÷òî òîâàðû íà ñêëàäå îòíîñÿòñÿ ê
îäíîé èç Ì âîçìîæíûõ êàòåãîðèé êà÷åñòâà. Â êàæäûé ìîìåíò âðåìåíè t òîâàðû íà ñêëàäå
ìîãóò îñòàâàòüñÿ â îäíîì è òîì æå êëàññå, ïåðåõîäèòü â îäèí èç Ì�1 êëàññîâ èëè
ïîðòèòüñÿ. Ïðåäïîëàãàåòñÿ òàêæå, ÷òî ïåðåìåùåíèå ìåæäó êëàññàìè ðåãóëèðóåòñÿ ìóëüòè-
íîìèàëüíûì îïåðàòîðîì ðàçðåæåíèÿ, êîòîðûé çàâèñèò îò íåêîòîðîãî ïðîöåññà ñ âåêòîð-
íî-îöåíèâàåìûìè ïàðàìåòðàìè. Äëÿ òðåõ âîçìîæíûõ ñöåíàðèåâ ïðåäëîæåíû ðåêóðñèâíûå
îöåíêè ïàðàìåòðîâ ïðîöåññà.

K e y w o r d s: partially observed inventory model, multinomial thinning operator, optimal
filtering.

1. Introduction. Deterioration (perishability) of items while in stock is a real

fact. Food, electronic components, pharmaceuticals, and drugs are just a few ex-

amples of such items: see [1—3]. In this paper we consider a multivariate dis-

crete state, discrete time stochastic inventory model for perishable items, where
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items are assumed to belong to M +1 possible categories (representing qualities).

Categories are assumed to be ordered so that Category 1 houses the best quality

and quality M houses the pre-perished quality and the perished items are housed in

Category M + 1. At each time t, t = 1, … items in Category i, i = 1,..., M, that

have not been sold either stay in the same class, or move to a lower class. The move-

ment between classes is regulated by some multinomial thinning operator to be de-

fined below. As a matter of fact the proposed model builds on an earlier work by the

authors where the Binomial thinning operator « ° » is used: see [4, 5] .

To Binomial thinning operator is defined as follows. For any nonnegative

integer-valued random variable X and ��[ , ]0 1 , let

� � X Y j

j

X

�
�
�

1

,

where Y1, Y2, ... is a sequence of of i. i. d. random variables independent of X,

such that P(Yj = 1) = 1 – P (Yj = 0) = �. We assume that � � X �0 if X � 0. The

operator « ° » was used by [6, 7] to examine integer-valued time series and to

model count data.

Here we shall assume that the inventory consists of a single item. Let X n
i , i =

= 1, ..., M + 1, n = 1, ... be the level of stock of the item in category i, at time n.

We also assume that within period n, an item of quality i either keeps its quality

with probability� i
i or move to any of the M – i lower qualities i+1, i+ 2, ..., M

with probabilities � � �i
i

i
i

M
i

� �1 2, ,..., , or perish with probability 	�� i
i
� �1

� � � �� �� � �i
i

M
i

M
i

2 1...



.

The inventory dynamics now take the form

X X U Vn n n n
1

1
1

1
1 1�� � � � � ,

X X X Vn n n n
2

2
1

1
1

2
2

1
2 2�� �� �� �� � ,

� (1)

X X X X Vn
M

M n M n M
M

n
M

n
M�� � �1

1
1 2

1
2

1� � �� � �� � � �... ,

X X X Xn
M

M n M n M
M

n
M�

� � � � � �� � �1
1

1
1

1
1

2
1

2
1 1�� � �� � �... ,

where U is a Z�-valued process representing the replenishment process which is
assumed to be predictable with respect to the filtration generated by the inven-
tory process, and

Vn n n n
MV V V� �


( , , ,..., , )1 2 0
(2)

is a Z�
M -valued random variable with distribution� n representing the demand at

each epoch n.
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Now we introduce the multinomial operator . This operator can be seen as a

natural generalization of the binomial thinning. Let X be an non-negative, inte-

ger-valued random variable. For a given value of X, suppose that a random ex-

periment consists of classifying each of X objects into one of M + 1 categories

with probabilities � � � �1 2 1, ,..., ,M M � such that � � � �1 2 1 1� � � � ��... M M .

Write

S X M i

i

M

X� � � �
�
�
�

�
�
�

�
�

�

��� � � �( , ..., ) :1 1

1

1

,

where � �1 1,..., M � are nonnegative integers. Let

�� � � �� ��



( , ,..., )1 2 1M .
(3)

Then ��  � �
�
�X I

SX

� �� �

�

( )Y , where Y = (Y 1, ..., Y M +1)� , Y i is the (random) num-

ber of objects that result in class i.

Then with ei denoting the M-dimensional standard unit vector with 1 in the

i-th position and zeroes elsewhere, the dynamics in (1) take the form

X X U Vn
i

n i

i

M

n ne�  � ��
�
� �� 1

1

, ,
(4)

where

X n

n

n

n
M

X

X

X

�

�

�

�
�
�
�

�

�

�
�
�
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�
, Un
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1
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�

�
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2
2
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1
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0

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

M

M

, ..., ��
�

�

M

M
M

M
M

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

0

0

1

� ,

Vn is given in (2).

A generalization of the operator  [8] was proposed in [9]. In both articles

this operator or its generalization gave rise to some new integer-valued time se-

ries where their properties were examined. The present paper take a different ap-

proach and focusses on estimating dynamically the parameters� �	, ..., M . To do

that we shall consider three possible scenarios. Initially, we shall adopt a

Bayesian point of view and assume that parameters � �	, ..., M have some given

prior density. Based on observing the level of stock of the items, recursive esti-

mate for the posterior density is proposed. This is done in the next section. In the

second scenario, it is assumed that the parameters� �	, ..., M are no longer static

in time but dynamic and changes according to some Markovian rule. Also, based
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on observing the inventory history recursive estimates are proposed in section 3.

The final scenario builds on the fact that the assumption of full observation of the

level of stock is not always valid as transaction errors, spoilage, product quality and

yield render full observation of the level of stock difficult. In this paper, we shall

consider the zero balance walk proposed by [10, 11], where at each period demand

is only observed when the inventory level drops to zero. The paper concludes with

the analysis of the zero-balance walk model and some general remarks.

2. Recursive parameter estimation. In this section we derive recursive es-

timates for the parameters � �� �	, ..., .M We suppose that each �� i takes values in

a measurable space (�i i i, ,� � ). The values of � �� �	, ..., M are unknown and, in

this section, we suppose they are constant.

Write Fn for the complete history generated by the observed inventory

Xk, k = 0, 1, . . ., n, and Gn for the complete history generated by the inventory and

the parameters � �� �	, ..., .M

To make computations easy: see [12] we shall work under a reference prob-

ability measure P where the process X is a sequence of i.i.d. random variables

with probability distribution �. Set � 0 1� , and for k �1

�

� �

�

�

k

n
i

n i

i

M

n n

n

e

�

 � �
 

!
""

#

$
%%�

�
� X U X

X

1

1

,

( )
, &n k

k

n

�
�
'�

0

.

It can be shown that the process {&n } is a martingale with respect to the filtration

Gn . Therefore, we can relate P and P by setting
dP

dP n nG �
& .

We shall call the probability measure P the «real world» measure. Using

similar arguments to those used in [12], we can also show that under the «real

world» measure P that the dynamics in (4) hold where V Xn
i

n i

i

M

e�  ��
�
�
 �� 1

1

,

� �U Xn n , and under P, Vn has distribution � n .

Now, from observing the inventory level, we are interested in computing

E I di i

i

M

n( )� (� (�
�

�
�

�

�
�

�
'

1

F . A generalized version of Bayes Theorem: see [12]

gives:

E I d

E I d
i i

i

M

n

n
i i

i

M

n

( )

( )

� (
� (

� (

� (

�
�

�
�

�

�
� �

�
�

�
�

�

�'
'

1

1F

F&

) *

�

�
�

E n n& F
.
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The numerator of the above expression represents a unnormalized condi-
tional expectation. Write

E I d q dn
i i

i

M

n n
M& 


( ) ( , ..., ) (� ( ( ( (� ( ( ( � (�
�

�
�

�

�
��

�
'

1

1 1F 1 ) ... ( ).d M M� ((

The normalizing denominator E n n[ ]& F is given by

� �1

1 1 1

+ +
,
...

( , ..., ) ( ) ... ( )
M

q d dn
M M M( ( � ( � (( ( ( ( .

The next theorem provides a recursion for qn
M( , ..., )( (( (1 .

Theorem 1. Suppose h M( , ..., )( (( (1 is the prior density for � �� �	, ..., .M

Then q hM M
0

1 1( , ..., ) ( , ..., ) ,( ( ( (( ( ( (� and the updated estimates are given recur-

sively by

qn
M( , ..., )( (( (1 �

�

� �
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P r o o f. Let f be a test function then by definition:

E fn
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+ � �
� �( ) ( ) ...( ) ( ,..., )( ( ( ( (( (i
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i

M
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i

M
i

f� � �

1 1
11 1 +

+ �q d dn
M M M
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1 1 1( ,..., ) ( ) ... ( )( ( ( (( ( � ( � ( .

Since f is an arbitrary test function the result follows.

3. A finite state case with Markovian dynamics. In this section we assume that

each group of parameters �� � �1
1
1

1
1� �( ,..., )M , �� � �2

2
2

1
2� �( ,..., )M , ..., �� M �

� �( , )� �M
M

M
M

1 is a set of dependent finite-state Markov chains. For the sake of

simplicity we suppose that the Markov chains in group i have state spaces equal

to Ki. More precisely we have for n � 0:

� �1
1

11
1

11 1
1

1 1
11

( ) { ,..., },..., ( ) { ,...( )n p p n pK
M M� �� � , }( )p M

K
1 1

1

� ,

� �2
2

22
1

22 1
2

2 1
12

( ) { ,..., },..., ( ) { ,...( )n p p n pK
M M� �� � , }( )p M

K
2 1

2

� ,

...

� �M
M

MM MM
K

M
M

M M Mn p p n p p
M

( ) { , ..., }, ( ) { , ...,( ) (� �� �
1

1 1
1

M
K M

�1) } .

Without any loss of generality, we identify the state space of each Markov chain

in group i, with the set of standard unit vectors R
K i

.

Write Fn for the complete filtration generated by the observed inventory X,

and Gn for the complete filtration generated by the inventory and the processes

�� � �1
1
1

1
1� �( , ..., )M , �� � �2

2
2

1
2� �( , ..., )M , ..., �� � �M

M
M

M
M� �( , )1 .

Now we define the probability transitions of the above processes. With .
denoting the tensor product of two vectors we assume the following:
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G

Filtering of an Inventory Model with a Multinomial Thinning Operator

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2007. Ò. 29. ¹ 1 9



� . � .�
��

�� ��
P n n e e nM

M
M
M

s
M

s
M

M
M

M
M

M M
� � � �( ) ( ) ( ),...,1 11

1 ( )n� �
��

1 .

Write

P n e n e
M M

s r M.�

��
� . � �

�

�

�

�

�
�

�
� �1

1
1

1

1
1

1
1 11

1
� � �( ) ( ) ,..., 1

1 11
1

( )n erM
� � �

��
�

�

�
� �

a
s s r rM M1

1
1

1
1
1

1
1

1

, ..., ; , ...,
,

P n e n e
M M

s r M.�

��
� . � �

�

�

�

�

�
�

�
� �2

1
2

2

1
2

2
2 21

2
� � �( ) ( ) ,..., 1

2 21
1

( )n erM
� � �

��
�

�

�
� �

a
s s r rM M2

2
1

2
2
2

1
2

2

, ..., ; , ...,
,

. . .

P n n e e n eM
M

M
M

s
M

s
M

M
M

r
M

M
M

M M M
� � � �( ) ( ) ( ) ,.�
��

� . � �� ��1 11
1 ( )n er

M

M
� � �

��
�

�
1

1

�
� �

a
s s r r

M

M
M

M
M

M
M

M
M, ..., ; , ...,1 1

;

A a
s s r rM M

1 1

1
1

1
1

1
1

1
1�

� �
{ }

, ..., ; , ...,
, s s r r K

M M1

1

1

1

1

1

1

1 1 2 1,..., , ..., , , ...,,� � � ,

A a
s s r rM M

2 2

2
2

1
2

2
2

1
2�

� �
{ }

, ..., ; , ...,
, s s r r K

M M2

2

1

2

2

2

1

2 1 2 2,..., , ..., , , ...,,� � � ,

...

A aM

s s r r

M

M
M

M
M

M
M

M
M�

� �
{ }

, ..., ; , ...,1 1

, s s r r K
M

M

M

M

M

M

M

M M, ..., , , , , ...,� � �
1 1

1 2 .

We have the following representations [12, 13]:

. � . � �
�

�

�

�

i

M

i
i

M

i nn A n W
1

1
1 1

1

1
1 11� �( ) ( ) ,

. � . � �
�

�

�

�

i

M

i
i

M

i nn A n W
2

1
2 2

2

1
2 21� �( ) ( ) , ...

(5)

..., � � � �M
M

M
M M

M
M

M
M

n
Mn n A n n W( ) ( ) ( ) ( ). � � . � �� �1 11 1 .

Here W1 is a martingale increment process with respect to the filtration generated

by the processes � �1
1

1
1 2,..., ,M W� is a martingale increment process with re-

spect to the filtration generated by the processes � �2
2

1
2,..., ,M

MW� is a martin-
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gale increment process with respect to the filtration generated by the processes

� �M
M

M
M, �1. Since

. � .�
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�
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/ �

�

�

�

�

�
�
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1
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1
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1
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M

� ���
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�
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�

1
1
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1 1

( ) ( )

( )

,

. � .�

��
�
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/ �

�

�

�

�

�
�

� �2

1
2

2

1
2

2
2

22

22M M

s
sn e e n p� �( ) ( ) , ..., ( ) ( )

( )

� M M
sn p

M

� ���
��

�
��

�

1
2

2 1

2 1

,

…

� � � �M
M

M
M

s
M

s
M

M
M

MM
s

Mn n e e n p
M M

MM

( ) ( ) ( ) ,. � .�
��

�
��
/ �� �1 1 � ���

��
�
��

�

1 1

1M
M M
sn p

M M

( ) ( )

( )

.

Therefore

��n n

s

s

M
s

e

p

p

p
M

1
1 1
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12

1 1
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 �

�

�

�
�
�
�
�

�

�

�

�

�

�
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( )
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�

�
�
�
�
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� �

��
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K
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M

e
11 1 1

1

1
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,X
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�
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M M

s M

[ ( ) , ..., ( ) ]( )
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� �1
1

11 1
1
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,
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s

M
s
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e
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2
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22
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0
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�
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�
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�
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X ,
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,

s

K

n
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e
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2

1

1 2
� �

��  +X

+ � �� �

�

I n p n ps
M M

s M

[ ( ) , ..., ( ) ]( )

( )

� �2
2

22 1
2

2 1

22 2 1

,

��n
M

n M

MM
s

M M
s

e

p

p

MM

M M

 �

�

�

�
�
�
�
�
�

�

�

�
�
�
�

�

�

�

X 1

1

0

0

1

,

( )

( )

�

�
�

 +
� �

��
s s

K

n M
MM M M

M

e

,..., ( )

,
1 1

1X

+ � �� �

�

I n p n pM
M

MM
s

M
M

M M
sMM M M

[ ( ) , ( ) ]( )

( )

� � 1 1

1

,

and the dynamics in (4) take the form

X X U Vn n
i

i

M

n i n ne�  � �
�

����
1

1 , .
(6)
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Write

p
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�

p

p

p

s
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M
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�
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0
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�
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p

p
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M
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�
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, ..., p
M
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p
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�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
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0

0

1

1

�

( )

( )

We shall adopt a similar approach to that used in the previous section and

work under a reference probability measure P where the process X is a sequence

of i.i.d. random variables with probability distribution �. Set � 0 1� , and

&n k

k

n

�
�
'�

0

, with

�

� �

�

�

k

n k
i

i

M

k i k k

k

e

�

 � �
 

!
""

#

$
%%

�
��

1

1X U X

X

,

( )
, k = 1, ... .

It can be shown that the process {&n } is a martingale with respect to the filtration

Gn . Therefore, we can relate P and P by setting
dP

dP
n n�



& .

The probability measure P is the «real world» measure. Using similar argu-

ments to those used in [12], we can also show that under the «real world» mea-

sure P that the dynamics in (6) hold. We shall be interested in computing

E n e n e
M M

s

M M

s. . . .
�

�

�

�

�

�

�

�

�
�

� �
�

�� �1

1
1

1

1
1

2

1
2

2

1

� �( ), ( ), 2
1 1

... ( ) ( ), .� �M
M

M
M

s
M

s
M

nn n e e
M M

. .�

��
�

��
� �

F

(7)

A generalized version of Bayes Theorem: see [12] shows that equation (7) is

equal to:

E n e nn

M M

s

M M

[ ( ), ( ),& . . . .
�

�

�

�

�

�

�

�

�
�

� �
�

��1

1
1

1

1
1

2

1
2

2

1

� � e n n e e

E

s M
M

M
M

s
M

s
M

n

n n

M M�

2
1 1

... ( ) ( ), ]

[ ]
.

� �. .� �
F

F&

The numerator of the above expression represents a unnormalized condi-

tional expectation. Let this expression be denoted by qn (s1, s
2, ..., s

M), where

s
1

1
1

1
1� �( ,..., )s sM , s

2
2
2

1
2� �( ,..., )s sM , ..., s

M
M
M

M
Ms s� �( , )1 .

The next theorem gives a recursion for qn (s1, s
2, ..., s

M).
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Theorem 2. Suppose p0 is the probability distribution of � �� �1, ..., .M Then

for n �1the updated estimates are given recursively by

qn
M( , , ..., )s s s

1 2 �

�
� � �� � �

� �
r r
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r r

K
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M
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1
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1
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1
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� � �, ..., ; , ..., , ..., ; 2

1
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a
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n

n
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i

n
i

X
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� �� �
�

�

� �
 

!
""

#

$
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S
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U X

X

�

� ( ) � � �i
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i
i

M
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m
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!
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$
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i i i
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1
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Here

r
1

1
1

1
1� �( ,..., )r rM , r

2
2
2

1
2� �( ,..., )r rM , ..., r

M
M
M

M
Mr r� �( , )1 .

P r o o f. First note that
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.

Using the representations in (5) this is
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F
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Here

r
1

1
1

1
1� �( , ..., )r rM , r

2
2
2

1
2� �( , ..., )r rM , ..., r

M
M
M

M
Mr r� �( , )1 .

4. A partially observed inventory. In this section we assume that the in-

ventory level is not observed at all time. However, the management observes the

event when the inventory falls to zero and cannot observe the inventory when it

is positive. To study such partial observations of the inventory levels, we intro-

duce a signal (message) random variable

Z I Xn
i

n
i� �



( )0 , n = 0, 1, 2, ... .

The processes Z i, i = 1, ..., M are discrete-time Markov Chains with the state

space the set {0,1} where 1 means an empty inventory and 0 means a nonempty

one. Write

Gn k k
i i

k k
Z i M k n� � �0 ��{ , , , , ..., , , , }X U V1 ,

Fn k
i

k k
Z i M U V k n� � �0{ , ,..., , , , }1 .

We shall suppose that:

P Z m P Z m Z X U Vn
i

n n
i

n
i

n
i

n n
[ ] [ , , , ]� � �� � � � �1 1 1 1 1

.
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Write

a X U V P Z m Z X U Vm n n n n
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n
i
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1 1 1 1 1 1 1

] .

We shall work under a reference probability measure P where the the pro-

cess X is a sequence of i.i.d. random variables with probability distribution �,

and the processes Z i are i.i.d. random variables uniformly distributed on the set

{0, 1}. Set � 0 1� , and for k � 1,
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�
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0

. It can be shown that the process {&n } is a martingale with re-

spect to the filtration Gn . Therefore, we can relate P and P by setting
dP

dP n nG �


& .

Under the «real world» measure P the dynamics in (6) hold. We wish to find a re-

cursion for
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Let this expression be denoted by qn
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Theorem 3. Suppose h M( , ,..., )x ( (( (1 is the prior density for X0, ��	, ...

..., �� M . Then q x h xM M
0

1 1( , , ..., ) ( , , ..., )( ( ( (( ( ( (� , and the updated estimates

are given recursively by
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For the notation see Theorem 1.
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P r o o f. Let f be a test function then by definition:
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Since f is an arbitrary test function the result follows.
In this paper we proposed a multivariate discrete-time, discrete state sto-

chastic inventory model for perishable items. The proposed model is based on
the multinomial thinning used in integer-valued time series analysis and for
modeling count data. The present paper was concerned with estimating the vec-
tor valued parameter process of the multinomial thinning where recursive esti-
mators were proposed from the Bayesian point of view, the dynamic view and fi-
nally the partial observed case.

Ðîçãëÿíóòî ñòîõàñòè÷íó ìîäåëü óïðàâë³ííÿ çàïàñàìè ç áàãàòüìà âèïàäêîâèìè çì³ííèìè,
äèñêðåòíó ó ÷àñ³ òà ïðîñòîð³, äëÿ òîâàð³â, ùî øâèäêî ïñóþòüñÿ. Ìîäåëü áàçóºòüñÿ íà
ïîïåðåäí³õ ðîáîòàõ àâòîð³â ç âèêîðèñòàííÿì äðîáîâîãî îïåðàòîðà ðîçð³äæåííÿ Ñòåíòåëà
òà Âàí Õàðíà. Ïðèéíÿòî ïðèïóùåííÿ ïðî òå, ùî òîâàðè íà ñêëàä³ íàëåæàòü äî îäíî¿ ç Ì
ìîæëèâèõ êàòåãîð³é ÿêîñò³. Ó êîæíó ìèòü ÷àñó t òîâàðè íà ñêëàä³ ìîæóòü çàëèøàòèñü â

îäíîìó ³ òîìó æ êëàñ³, ïåðåõîäèòè â îäèí ³ç Ì�� êëàñ³â, àáî ïñóâàòèñü. Ïðèïóñêàºòüñÿ
òàêîæ, ùî ïåðåñóâàííÿ ïîì³æ êëàñàìè ðåãóëþºòüñÿ ìóëüòèíîì³àëüíèì îïåðàòîðîì ðîç-
ð³äæåííÿ, ÿêèé çàëåæèòü â³ä äåÿêîãî ïðîöåñó ç ïàðàìåòðàìè, ùî âåêòîðíî îö³íþþòüñÿ.
Äëÿ òðüîõ ìîæëèâèõ ñöåíàð³¿â çàïðîïîíîâàíî ðåêóðñèâí³ îö³íêè ïàðàìåòð³â ïðîöåñó.
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