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This paper presents criteria for the existence and uniqueness of solution to Kronecker product ini-
tial value problem associated with general first order matrix difference system. A modified least
square method and a modified QR algorithm are developed to find the best least square solution
of the Kronecker product of matrices. Using these methods as a tool the general solution of the
Kronecker product initial value problem whose initial condition matrix is over determined is es-
tablished. Using the method developed by Ishey Haviv and Oded Regev, on finding shortest vec-
tor problem we improve further the best least square solution. To boost the hardness factor we
simply apply the standard Kronecker product or tensor product of lattices.

IpensoxeH KpUTepHid CYIIECTBOBAHHS U €AMHCTBEHHOCTH PEIICHHS 331291 KPOHEKEPOBCKOTO
MIPOM3BE/ICHHS C HAYAJIbHBIMH YCIIOBUSIMH, CBSI3aHHOW ¢ 00OOIIEHHOW Pa3HOCTHOM CHCTEMOH,
MMeEIOIIIei MaTpHIly TIEpBOTo mopsiika. Pa3paboTansl MOAMGUIIMPOBAHHBIH METO/I HAMMEHBIIINX
KBaJpaToB U MOAMGUIMPOBaHHBI QR anroput™m Juis HaXOXKICHUS HAWIYYIIETO PELICHHUS
KPOHCKCPOBCKOI'O IMPOU3BEACHUSA MaTpHUL] MECTOAOM HAMMCHBIIMX KBaJApaTOB. yCTaHOBHeHO,
YTO ITPU UCIOJIB30BAHIU ITHX METOOB JUIsl OOIIETr0 PEIICHH s 331a9i KPOHEKEPOBCKOTO IPOU3-
BE/ICHUsI C HAYaJIbHBIMH YCIOBHSIMH €¢ MaTpHIla HAYaJIbHBIX YCIOBHIl SIBISICTCS IIE€pEOIpe-
nenenHoit. C ucmonp30BaHueM Meroja, paszpadorannoro Ishey Haviv u Oded Regev, mpu
OIPeICIICHHUH 3a/Ia9l KpaT4aiIiiero BeKTopa yIydllIeHO PEUICHHE METOI0OM HAUMEHBIINX KBaJI-
paroB. IIpuMeHEHO CTaHAapTHOE KPOHEKEPOBCKOE MPOM3BEICHUE WM TEH30pPHOE IMPOM3Be-
JICHUE Ha CeTKaX JUIs MOBbBILEHUS KO3 (UIMEHTA HKECTKOCTH.

Key words: productinitial value problem, existence and uniqueness of solution, the best least
square solution, shortest vector problem.
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1. Introduction. Kronecker product or tensor product of matrices is an inte-
resting area of current research and a great deal of work has been done by many
authors in recent years [ —3]. The application of Kronecker product matrix sys-
tem has been extended to various fields of control engineering, method of lines
and systems engineering. The importance of Kronecker products of matrices
gained momentum because of its computational and notational advantages. In
Cryptography the closet point search problem and shortest vector problem
(SVP) associated with lattices are the two main computational problems. The
closed vector problem (CVP) is inhomogeneous variant of SVP, in which given
a lattice and some target point one has to find the closet lattice point. The hard-
ness part of lattice problem mainly comes from the fact that there are many pos-
sible bases for the same lattice. One of the main reasons for research on the hard-
ness of lattice problem is their application in Cryptography. In the year 2004
Ajtai [4], came up with a construction of Cryptography primitives, whose secu-
rity relies on the worst case of hardness of certain lattice problems.

In this paper we shall be concerned with the general two first-order matrix
difference systems of equations of the form:

x(n+l)=A4(n)x (n),
y(n+l)=B(n)y(n),

where 4 (n), B (n) are square matrices of orders (px p) and (gxgq) respectively
and whose components are all real defined on

+
N, ={ng, ng L, ng*2, .., ny*k, ..}

where k€ N* and n, € N, N being the set of integers. Before, we present our re-
sults in this paper we need the following basic properties of the Kronecker prod-
uct of matrices.

If Ae R™" and B e R”™ then the Kronecker product (or tensor product) of
A and B denoted by (4 ®B) is defined as the partition matrix

apb ... a,b

(A®B)= :
au,b - a,,b

mn

and is in R""*"
The Kronecker product matrices defined above has the following proper-
ties:

(A4®B)" =(4" ®B"),
(A®B)(C®D)=(AC ®BD),
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(A®B) ' =47"'®B",
(A®B)(n+1)=(4(n+1)®B (n+1)),

where the matrices involved are of appropriate dimensions to be conformable for
multiplication and inversion. For example (A®B) ™' =47 @ B™' we implicitly
assumed that 4 and B are non-singular square matrices. Initially we are not mak-
ing use of the theory of generalized inverse of matrices; this concept will be used
in our later discussions in developing modified-Gram-Schmidt algorithm and in
encoding and decoding algorithms. Usually search problems involving lattices
can be solved using modifications and extensions of the closest-point algorithm.
Given a lattice Ae R™, the shortest vector problem is to find a vector in A—{0}
that has the smallest Euclidean norm. In fact, the history of the shortest vector
problem is closely interlinked with that of the closest point problem. Further, the
closest point algorithm can be straight forwardly modified to solve the shortest
vector problem [5].

This paper is organized as follows: in section 2 we present the general solu-
tion of the homogeneous Kronecker product difference system and then present
the general solution of the Kronecker product initial value problem; section 3 is
concerned with the method of least squares for Kronecker product system of
equations. We develop the method of least square problems to solve the Kro-
necker product system by using modified QR-algorithm. Section 4 provides a
brief work of khots work [6] together with the minor modifications; we boost the
hardness factor of the standard tensor product of lattices. To our belief it im-
proves the best least square solution and SVP technique further improves the ex-
isting methods to find the best least square solution of the Kronecker product ini-
tial value problem.

2. General solution of the kronecker product initial value problem. In
this section, the general form of the Kronecker product difference equation we
consider is of the form

[P(m)@R(mM][X (n+) @Y (n+D]+[Q (n) @S (n)][X(n)®Y(n)]=0, (1)

where P (n), O (n) are invertible square matrices of order (px p) and R (n), S (n)
are square matrices order (¢ x g) and x(n) and y(n) are vectors of orders (px1) and
(g x1) respectively. We now present the general solution of (1) in terms of funda-
mental matrix solutions of P(n)x(n+1)+Q (n)x(n)=0and R(n)y(n+l)+
+.S (n) y (n)=01n the next theorem.

Theorem 1. [® (n)®Y (n)] is a fundamental matrix of (1) if and only if
@ (n) and ¥ (n) are fundamental matrices of P (n)x (n+1)+Q (n)x(n)=0and
R(n)y(n+1)+S (n) y (n)=0respectively.
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Proof. Suppose ®(n)and ¥ (n) are fundamental matrices of P (n)x (n+1)+
+Q(n)x(n)=0 and R (n) y (n+1)+S (n) y (n) =0respectively. Then

[@ (n+D) @ (n+D)] =[P (m) Q (M) @R (1) S (m)][® ()@ (n)]=
=[P (m @R (M][Q (m) ®S (m)][® (m)®F (n)].
Hence
[P(n)®R(n)][® (n+])®Y (n+D)]+[0 (n)®S (n)][D (n)®Y (n)=0].
Hence [© (n)®Y (n)] is a fundamental matrix of (1). Conversely, suppose
[® (n)®Y (n)]be a fundamental matrix of (1). Then
[P(n)®R (n)][® (n+1)®Y (n+D)]+[Q (n)®S (n)][® (n)®Y (n)]=0.
Therefore
[© (n+D)®R (n)]=[P~' () ®R™' (][O () ®S (M][® (n)®Y (n)].
This implies
[@ (n+D)+P " (n) O (n) D (n)] ®1,=-[(1,)®Y¥(n +)+R 7 (n) S (n) ¥ (n)].
This relation 1s true if and only if £[® (n+1)+P" (n)Q(n)@(n)]@] and
+¥ (n+1)+R""'(n) S (n) W (n)are either identity matrices or null matrices of ap-

propriate dimensions. Thus, we have the following two cases.
Case 1:

—[® (n+1)+P ' (n) O (n) D (n)] =1, and ¥ (n +D)+R 7 (n)S (n) ¥ (n) =1,.

Then

O (n+)=-[1, +P ' (n) O (n)® (n)] and ¥ (n+1) =1, —R7'(n)S (n) ¥ (n).
Case 2:

[® (n+D)+P7 (1) Q ()@ (n)]=1,, and —[¥(n+D)+R"'(n)S (n) ¥ (n)]=1,

Then

O (n+l)=1, —P ' (n)Q (n)® (n) and ¥ (n+1) =-[1, +R7'(n) S (n) ¥ (n)].
Case 1 and 2 contradict each other. Thus

+[D(n +1)+P‘1(n)Q(n)CD(n)]:Op and +[¥ (n+D)+R'(n) S (n)¥(n)]=0,

Thus @ (n) and W (n) are fundamental matrices of P(n)x (n+1)+Q (n)x (n)=0
and R (n) y (n+1)+S (n) y (n) =0 respectively.

Theorem 2. Any solution of the Kronecker product system of difference
equations (1) satisfying [x (n,) ® y (n,)]=[C, ®C,]is of the form

[x () ®y (m)]=[® (1n,1n0) O (n,1,)][C, ®C, ],
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where @ (n,n,)=® (n)® '(n,) and ¥ (n,n,) =" (n) ¥ (n,) with the prop-
erty @ (n,ny) =1, and ¥ (n,ny)=1,.

P ro o f. Proof is elementary and hence omitted.

The above solution may conveniently be written as

[x (M) ®y (m]=[® (n)@F (n)][C, ®C,], 2

where C; and C, are constant column vectors of order p and q respectively. We
now consider the Kronecker product Initial value problem of the form:

[P(n)®R(m)][x (n+1) @y (n+D]+[Q (1) @S (n)][x (n) @y (n)]=0, (3)
(M} ®N ) (x(ng)®y(ng)=(ar, @at,],
where M, and N, are constant matrices of orders (px p) and (g x q) respectively

anda  is (px1)and o, is (g x1) column vectors. Substituting the general form so-
lution given in (2) in (3), we get

(M N, J[® (1)) ®F (10)][C, ®C, ]=[ar; @ aty].

Hence
[C1 ®C,1=[M ®N, T [® (1) @ ()] [0t ® et ]=
=[M7' D7 (n) ONY (ng)ller; ® ]
We are now in a position to give the general solution of (1) satisfying (3) and
is given by
[x (M) @y (m]=[® (m) @Y (m)][M'® ™ (ng) O N, ¥ (ng)][er; @, ]=

=[® (MM (ng) e, @ (m) Ny ()t ]
The solution of the initial value problem when M, and N, are invertible is
unique. However when M, and N, are rectangular matrices of order (mx p) and
(nxq) respectively, we develop modified QR algorithm in the next section [7].

We now establish variation of parameters formula associated with the
non-homogenous first order difference system

[P(m)®R (n)][x (n+)®y (n+D]+[Q (n) ®S (m)][x (n)®y (n)]=
=[Fi(n)®Fy(n)], 4)

where F}(n)and F,(n)are column vectors of order (p x1) and (¢ x1) respectively.
Theorem 3. A particular solution of (4) is given by

[x (m®y (M]==[® (M @ ()] 3] [0 (N®S " ()IF () ®F,()].
P r oo f. Any solution of the homogeneous system (1) is of the form
[x (m)®y (n)]=[® (n)@¥ (n)][C; ®C,],
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where @ (n)is a fundamental matrix of P (n)x (n+1)+Q (n)x(n)=0 and ¥ (n)
is a fundamental matrix of R (n) y (n+1)+S (n) y (n)=0.

Since a solution cannot be a solution of (4) unless [F(n) ® F,(n)]=[0 ®0].
Therefore, we seek a particular solution of (4) in the form

[x (1) ®y (n)]=[® (1) ®¥ (n)][C,(n) ®C,(n)].
Then
[P(n)®R(n)][® (n+)®Y (n+D][C,(n+)®C,(n+1)]+
+[® (n) ® ¥ (n)][Cy(n) ®C4(n)]S =[F,(n) ® Fy(n)]
ince ® (n+1)=—P ' (n) O (n)® (n)and ¥ (n+1)=—R ' (n) S (n) ¥ (n). We have
—[0 (1) ®S (M][C,(n+D)®C,(n+1)]+[Q (1) ®S (n)][C,(n)®C,(n)]=
=[t (n+1)=C,(n) ®C,(n+1))~C,(n)]=—[0 " (n) ® S ' ()][F,(n) ®F,(n)],
AC, =—[07'(m)®S " (M][F (n)®F,(n)]
or
Cm=-3 10" ()OS (NIAO R
Therefore

[x(n) ®y(n)]=[®(n) ®¥(n)]| [C, ®C,]- i [0~ ()®S ' (DIIF, () ®F,(i)]|.

i=ny

Thus, we have the following theorem.
Theorem 4. Any solution of the first order difference system (4) is of the
form

[x (M ®y (M]=[® (M@ (m][C, ®C, ]~
—[® (M ®Y (m)] i [0 () @S DI (S F (D).

P r o o fis immediate.
3. Method of least squares. In this section, we develop a method for least
square problems to solve the Kronecker product system of equations

(A®B)(x ®y)=a O (5)

We need the following results for constructing least square algorithm and
the best least square algorithm.
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Result 1. Let 4 be an (m x n) given matrix with rank p < min{m, n}. Then
there exists a factorization AP = QR with the following properties:

1) Pis an (n x n) permutation matrix with the first p columns of AP form a ba-
sis of

I,(A)={AxeR"/xeR"};

i) Q is an (mx p) matrix with orthonormal columns and R is a (p xn) upper
trapezoidal matrix of the form R =[R, R, ], where R, is a non-singular (p x p) up-
per triangular matrix and R, is a (pxn — p) matrix.

Note that in (5), 4 is (mxn) and B is (pxq) rectangular matrices. Suppose
that 4 and B are QR decomposed as 4=0, R, and B=0, R,, where Q) is (mxm)
matrix with orthonormal columns, R, is (m x n) upper trapezoidal matrix where O
is ( px p) matrix with orthonormal columns and R, is (pxq) upper trapezoidal
matrix. Assuming that full rank case, i.e. p(4)=n<mand p(B)=¢< p, R is of
the form

LD

1

o e hy

0 0.

.......................... "

R - 0.0 B

o0

0 0...0

0 0...0

where R" indicates an (nxn) matrix and 0" indicates an (m—n)xn) null ma-
trix and similarly

(2) (2) (2)
oy Ny
(2) (2)
0 ry on
............................ 2O
= 2) |=
R, 0 0 Y4q [0(2)
0
0 0 0

where R? is a (px p) matrix and 0?) is (p —gx¢) null matrix.
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Theorem 5. If 4 and B have a QR factorizations of the form O; R, and O, R,
respectively, then A ® B has a permitted QR factorizations as

(4 ®B)=(Q1R1 ® Q2R2)=(Q1 ® Qz)(Rl ®R2)-

Pro o f Consider

(0,®0,)(0,®0,)=(0{0,®0]0,)=(,®1,)=1,,

This implies O, ® 0, is orthogonal also to Z(R, ®R2)=()(;j where 7 is

(ngxngq) square matrix, 0 is an ((mp —np)x nq) null matrix and z is a permutation
matrix.
Theorem 6. (R, ®R,)" (R, ®R,)=(R" @ RP)(R" ®R?),
Proof Weknow that
(R ®R,)" (R, ®Ry)=(Rj ®R; ) (R, ®R,)=

1 1 1
()R2 ()R2 rl(n)R2
0 rOR, .. DR
(1) pxq 21 **2 2n *+2

" R2 qup .. qup... qup... qup

) D) T o ] e
_| "2 R, 03/ Ry Ogsprr Ogyp Ogsp +OR
pxq pxq nn 12

0
) pT ) pT ) pT xq xq pxq

()RZ r2(n)R2 rfn)RZ qup . qup r i

Opxq Opxq Opxq

The block element in block row i and block j column n element is given by

[(R, ®R,) (R, ®R,)]; Z (r,f“r,]“)(Rsz) 1<i,j<n.
The element in row i and column j of (R} R, ) is given by
(R R,)= Z r(2)rk52)’ 1<i,j<q.

Thus (R, ®R,)" (R, ®R,)=(RV @ RP)" (RV ®R?).

Theorem 7. t” 7 is the cholesky factorization of (4® B)’ (4® B), where
=RV ®R®).

Proof.

(A®B) (A®B)=(Q,R, ®O,R,) (O\R, ®Q,R,) =
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=[(01 ®0,)(R, ®R,)I' [(Q; ®O,)(R, ®R,)]=
=(R, ®R2)T(Q1 ®Q2)T(Q1 O, )R ®Ry)=
=(R, ®R2)T ZTZ(R1 QR,)=
=[z(R, ®R,)]" [2(R, ®R,)]=1"1=GG,

where G is lower triangular.
Now, applying these results to our main problem

(A®B)=(x®y),o =(a. ®P)
the least square solution (x ®y)(n,) to the normal equation
(A®B) (A®B)(X ®7)(ny)=(4®B)" (o ®P)
can be obtained from the equivalent equation
T2 (X ®)(ny) =(A® B) (o0 @) =(hy ®hy).

Since the coefficient matrix is the product of the upper and lower triangular ma-
trices, the solution can be computed by the usual two step procedure:

1. Solve by forward substitutions.

2. Solve 1 (x ®y)(n,)=(w® z) by backward substitutions.

If the dimension of T (ng xnq) is too large to permit the direct solution of T,
the above two-step procedure can be further refined. Partition of each vector
(w®z) and (h, ® h,) into n-sub-vectors, with each sub-vector of dimension
(¢x1) be an (ng x1) matrix can be partitioned as (w”) ® z))fori=1,2, ..., n and
j=1,2,..., q. Similarly (4, ® h,) and the solution vectors (x ® y)(n, ) are parti-
tioned. In stepl, t (w® z) =(h, ® h,) may be written in partitioned form as

Wrp@qr
RPIRPT - 0, 0g o @z
Drp@qr W rp@T
rp [RZT - [RT] - 04 0?2 @70 | =
......................................................................... " o ()
0" ®z

rOROT rORAY FOROT

h" @n (6)

(2) ()

= hl ®h2 s ] - 19 2: 5 q

Since [RP T is a lower triangular matrix, the forward substitution solution can
be carried out in n sub-steps which is given in the following algorithm.
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Algorithm. . _

1. Solve 7' [RPT (0" ® /) =(h{" @ h{/) by forward substitution.

2.Solve rV[RPT =[hP @ P 1- 1P [RP T [0 ® 2/ by forward sub-
stitution.

3. Solve

n—l1
rn(’i) [R(Z) ]T [(D(")xz(j) ) :(hl(n) ®h£j) ) _Z rin(l)[R(z) ]T (0)(1) ® Z(j))
i=1

by forward substitution.
Thus (x ® y)(n,) can be completed without explicit II formulation of R by

this two-step approach.
The vector (h; ® h,) defined in (6) can be constructed as follows:

(ARB) (0 @B)=h, ®h,

or
(hy ®hy)=(1,,M)" ®(O,R,) (0 ®B)=(M" ®R} )(1,,®0] )(a ®P)=

03 (aV ep’)
=M"®R})| 0F (P @) |=(M" ®R] ) (0, ®P)), =12, ...,p,
0; (@™ @)

where
(0, ®B))=(I,® 03 )(a ® B)=
=((O\R))" ®(,R,)" (00, ®B))=(R{ ®R]) (O] ®1,)(c. ®P)=
1 1 1
a1, a1, - a1,
1 1 1
I FE T o
=(R1 ®R2) : (0°1®|31)=(R1 ®R2)(0°2 ®Bz);
a1, a1, g,

Otgl)®[3g)
@ g g
(0, ®B,)=| %2 P27 |

28 ISSN 0204-3572. Electronic Modeling. 2008. V. 30. Ne 6



Solution of Kronecker Product Initial Value Problems Associated

where

al? @B =>"¢P@P ®B"), k=12,..,m,
r=1

2.4,/0: (@ ®p)=07 3 g (@ @Y.

r=1 r=1
Therefore (AQ B) (a ® B)=(R{ ® R} )(a (2/‘) ® Bgl) ). Proceeding from here
R0 (@ © p)
Ryny (@) ® BY)
+Ry r) (0P ® B

n
T 1 k /
RS e pl)
k=1

O ® ni)
= P ® n{ |,
" ® h

(R} ®R}) () ®B)=

1. €.

h®h) =Ry Y rP @ @BY) for i=1,2,....n,j=1,2,...,q.
k=1

Thus the vector (h; ® h,) can be computed block by block as needed without re-
quiring the large matrix as claimed.

4. Modified Gram Schmidt process. In this section, we extend the method
of modified Gram Schmidt process given in [7 ] to the Kronecker product system
of equations. For let 4 be an (mxn) matrix with rank » <min{m,n} and B be
a( pxq) matrix with rank s < min{p, ¢}. Then there exists a factorization of the
matrices 4 and B of the form AP' =Q'R' and BP?* =Q?R?, with the following
properties:

1) P! and P? are (n x n) and (g x ¢) permutation matrices with the first » col-
umns of AP' form a basis of 1 »(A4)and the first g columns of BP? form a basis
of 1,,(B);

2) Q' and Q* are (m x r) and (p x s) matrices both with orthnormal columns
and R' and R? are (r x n) and (s x ¢) upper trapezoidal matrices to the form

R'=[RVRP] and R*=[R{"R{?],

where Rl(l) and Rl(z) are non-singular (7 x r) and (s x s) upper triangualar matrices

and R;l) and R§2) are (r x n—r) and (g x g — s) matrices respectively.
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Result 2. Let A and B be (m xn) and (p x g) matrices with ranks » and s
respectively. Write A=(d', d* ..,a") and B=(b", b° .., b% .., b?), where

a' € R™ and b’ € RY then all the least square solutions of the Kronecker product
system of equations can be obtained by solving the consistent Kronecker prod-
uct system given by

@7 =[R" @R [(0; ® 0 N ®B)—(RP®RP)(v, ®V,)].

P r o o f. Consider the system of equations (4 ®B)(x ® y) =(a ®). Let P !
and P be permutation matrices such that AP' =Q'R"' and BP* =Q?R*. Then

(A®B)(x®))=(0,P" ® R,P? )(x®))=(0; ® 05)
and therefore,

(F®7)=(P' ®P2)(”1 ®”2]=(P1”1 ®P2u2J'

v, ®v, Pv, ®P,v,

Hence (u;®u,)=(R"® RIV)(0] ® 05 ) (e ®@B)-RP (v,®v,),  where
v, € R"" and v, € R”". Note that a basic least square solution is obtained by
taking (v, ® v, ) =(0®0).

5. Shortest vector problem. In this section, we shall be concerned with the
search problems for lattices viewed as infinite point’s sets. It is quite clear that
general special circumstances, the methods presented in [8] can be modified to
solve search problems for finite subsets of lattices. This will have many impor-
tant applications in Communications. Since the invention of public key Cryptog-
raphy in 1976, a new direction in Cryptography came into existence. This was
mainly due to Diffe and Hellman [9] and security of most Cryptosystem is based
on the hardness of factoring / computing discrete logarithm. In the year 1996
Ajtai [4] presented an efficiently computable function and it is hard to invent on
the average if the underlying lattice problem is intractable. Further, Ajtai and
Dwork [10] designed a public key Cryptosystem based on the ill conditioned
hardness of a lattice problem. However, in the year 1998 Ngayen and Stern [5]
showed that breaking the Ajtai C.Dwork Cryptosystem is unlikely NP-hard and
for realistic theories of the parameter one may even reach the private key from
public key. In this section, we use the method described by Ishay Haviv and
Oded Regv [8] to improve the best least square solution obtained in section 4 in
the process of finding shortest vector in R ”. In literature there are two main
computational problems associated in the lattices are the SVP and the CVP. In
the first one, we are supposed to find a shortest non-zero vector in the lattices.
The problem CVP is an inhomogeneous variant of SVP, in which given a lattice

30 ISSN 0204-3572. Electronic Modeling. 2008. V. 30. Ne 6



Solution of Kronecker Product Initial Value Problems Associated

and some target point, one finds the close lattice point. The hardness of lattice
problem is probably due to the fact that there are many possible bases for the
same lattice.

Definition. A lattice is a discrete additive sub groups of R". Equivalently,
fix n>1 Let S < R™ be a finite non-empty set. The lattice generates by S is the
set of integer linear combinations of the elements in S, i.e.

L(bl...bn):{ZO.ibi:oci eZ forall 1<i< m}

of m linearly independent vectors by, by, ..., b, in R" (n > m). If rank n equals the
dimension m, then we say that the lattice is of full rank.

The set {by, b, ..., b, } is called a basis of the lattice. Note that a lattice has
many possible bases. We often represent a basis by an (m x n) matrix having the
base vectors as columns, and we say that the basis B generates the lattice L. The
determinant of a lattice L is given by

det L(A4):"detd" 4,

where A4 is any basis with L (4) = 4.

In this section we use two trapdoors given [8] for the shortest vector prob-
lem based on the tensor product of two full dimensional lattices, L, < R". For let
L=L, ®L, denote the tensor product and L, < R the lattice point b: = (by, b, ...
..., byy ) € L can be written as a two dimensional array consisting of elements

b] b2 e bq (S L2

by byis by, €L,

bnfl,qul bnfl,q+2 bnq €L,
eliel el

so, that the column vectors belong to the lattice L, and the row vector to L,. We
have the following very important proposition.
Proposition. Suppose L, L, are any two full dimensional lattices then the
following are true:
dim(Z, ® L,)=dimL,,dimL,,

dim (L, ® L,) =(det L, )™ (det L, ) ™1,

Note.Let B:=(by, by, ..., b, ) be an ordered set containing g linearly inde-
pendent column vectors in R” then the set of all integral linear combinations of
the vectors

m qn
L=L(B):=)(t;b;/t; € ZZ)=) ZZb,
i=1

i=l1
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is called the lattice generated by the base B. Its dimension is dim L: = g and if
p=q, we call it a full dimensional lattice. The vectors L are called lattice 4 lattice

points L sub ¢ L with dim L sum = dim L, is called a sub lattice of L. Suppose L,
be a sub lattice of ZZ” and the elements are called integer lattices.

The lattice generated by the matrix 4 and L, be the lattice generated by the
matrix B. Then the tensor product of L, and L, is defined as the mp dimensional
lattice generated by mp x ng matrix (4 ® B)and is denoted by L=L, ® L,. Equiv-
alently, L is generated by the ng vectors obtained by taking the tensor product of
two column vectors one from 4 and one from B. Let L, be the vectors obtained by
taking the tensor of the two column vector x and y. If we think of the vectors in L
as m x p matrices, then we can define L=1L, ® L, ={Ax B" : x € Z"* }with each
entry in x corresponding to one of the ng generating vectors. In this section we
are interested in the behavior of the shortest vector in a tensor product of lattices.
For any two lattices L, and L,, we have

WL oL <aPralL,, (7)
where 1 < p < oo [4]. Indeed for any two vectors x and y satisfying (x ® y) , =
=X,V ,- Applying this to shortest non-zero vectors of L, and L,, we get (7) Note

that X(lp )(1)is the minimum L, distance between two distinct points in the lattice
L for any p, 1< p< oo, The L, norm of a vector x € R? is defined as

q 1/p
Xp :(inpj

i=l1

and its L, norm is denoted by x_ max x ik(ip )(L) is the L, norm of a shortest
non-zero vector:
AP (L)=min {r:dim (span (LB, (r))=i}.
Minkowski’s first theorem: For any lattice L of rank r
det (L)> (“L)j |
Jr
For a full rank lattice L < R, its dual lattice denoted by L is defined as
L ={xeRY/<x,y>ezfor all yeL)

Andif L=L we say that it is a self-dual lattice. It can easily be shortest if L is lat-
tice generated by the basis B, then (B™')” generates the lattice L .

Theorem 8. For any large ¢, there exists a ¢ dimensional self-dual lattice L
satisfying A ; (L®L* )< \/5
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Proof. LetL be alattice generated by a basis B: = (bl, by Let(B™') =
= {b1 , b2 ) ; + be the basis generated by the dual lattice L. Now the vector

ezzb,. ®b, e LOL .

i=1

This Vector can be written as BB~ =BIl,((B” DT or B_IB:Iq =
=((BH"H I ,B. And clearly has L, norm\/‘g The proof is complete. The shortest
vector problem discussed above is of immense importance in practical applications.

3anporoHOBaHO KPUTEPiil iCHyBaHHS Ta €IMHOCTI PO3B’SI3Ky 3a/1adi KPOHEKEPOBOTo JOOYTKY 3 I10-
YaTKOBUMH YMOBaMH, SIKa OB sI3aHa 3 Y3araJlbHCHOIO PI3HUIIEBOIO CUCTEMOIO, 10 MA€ MATPHIIIO
nepiioro nopsiaky. Po3podieHo momudikoBaHuii METO/] HAHMEHIIIMX KBAIPATiB 1 MOAM(IKOBaHUI
OR anropuT™ JUIs HOLIYKY HAMKPAIIOro po3s’s3Ky KPOHEKEPOBOro JOOYTKY MAaTpHIb METOIOM
HalMEHIIMX KBaJpaTiB. BCTaHOBIIEHO, 110 NMPU BUKOPHCTAHHI IIMX METOMIB VIS 3aralbHOTO PO3-
B’S3KY 3a/1a4i KPOHEKEePOBOro JOOYTKY 3 MOYaTKOBUMHU YMOBAaMH il MaTPHUIs MOYATKOBHX YMOB €
MePEO3HAUCHO0. 3 BHKOPHCTAHHSAM MeToxy, po3pobieHoro Ishey Haviv and Oded Regev, mpu
BI3HAYCHHI 3a/1a4i HAHKOPOTIIIOr0 BEKTOPA MOKPAIIEHO PO3B’ 30K METOIOM HaiIMEHIIINX KBaJIPaTiB.
3aCcTOCOBAHO CTaHIAPTHHI KPOHEKEPIB T0OYTOK 200 TEH30pHMIT TOOYTOK Ha CITKAX /IS 301TbIICHHS
Koe(]ILiEHTa JKOPCTKOCTI.
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