VK AMS(MOS) 34K45, 34K 12

I. M. Stamova
Bourgas Free University
(Bulgaria, 8000 Bourgas; istamova@abv.bg)

Second Method of Lyapunov
for Boundedness in Terms of two Measures
for Impulsive Functional Differential Systems

This paper studies an initial value problem for impulsive functional differential equations with fi-
nite delay and fixed moments of impulse effect. By using piecewise continuous functions coupled
with the Razumikhin technique sufficient conditions for boundedness in terms of two different
piecewise continuous measures of such equations are found. The results extend and improve the
earlier publications.

HccnenoBana 3aaya ¢ HaYaNbHBIMU YCIOBUSIMH I UMITYIBbCHBIX (DYHKIIMOHANBHBIX AuDpe-
PEHIMATBHBIX YPABHEHHI! C KOHEYHBIM 3aMa3AbIBaHAEM U (DHKCHPOBAaHHBIMI MOMEHTAMH HMITyThC-
HOTO BO3JICHCTBHA. B pesynbTaTe HCIIONB30BaHMS KyCOYHO-HEHPEPHIBHBIX (YHKIMI U MeToma
Pa3symuxuHa HalJieHbl JOCTATOUHBIE YCIOBUSL OIPAHUYEHHOCTHU I10 JABYM Pa3IMYHBIM KYCOYHO-
HETIPepbIBHBIM KPUTEPUSIM TaKUX ypaBHeHUIL. IIpuBeieHHbIE pe3ybTaThl JONOIHSIOT U IOATBEPIK-
JIA10T NOJTyYEHHbBIE PaHee.
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Introduction. Impulsive equations have a great deal of applications in physics,
biology, medicine and other sciences. In [1—5], stability and boundedness proper-
ties of impulsive ordinary differential equations are discussed. There also exists
a well-developed qualitative theory of functional differential equations. See, for
example, [6—9] and the references cited therein.

The impulsive functional differential equations are a natural generalization
of functional differential equations (FDE) without impulses and of impulsive or-
dinary differential equations (IODE) without delay. They are adequate mathe-
matical models of various real processes and phenomena, characterized by the
fact that their state changes by jumps and by the dependence of the process on its
history at each moments of time. At the present time the theory of impulsive
functional differential equations undergoes rapid development. A large number
of criteria on the stability of the solutions of such equations have been derived
[10—16]. In order to explore Lagrange stability or the existence of periodic so-
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lutions of the impulsive functional differential systems, we need to know not
only the stability but also the boundedness of solutions. However, very little is
known about the boundedness properties of such systems.

The objective of this paper is to investigate the boundedness in terms of two
measures for the impulsive systems of functional differential equations with fi-
nite delay and fixed moments of impulse effect. The priorities of this approach
are useful and well known in the investigations on the stability and boundedness
of the solutions of FDE without impulses, as well as in the generalizations ob-
tained by this method [4, 6, 17].

We give some preliminary results and basic definitions which will be used.
Sufficient conditions for boundedness in terms of two different piecewise con-
tinuous measures of the impulsive nonlinear functional differential equations
under impulsive perturbations at fixed moments of time are given. The investi-
gation is carried by employing a class of piecewise continuous functions which
are generalizations of the clasical Lyapunov’s functions. Moreover, the tech-
nique of investigation essentially depends on the choice of minimal subsets of a
suitable space of piecewise continuous functions, by the elements of which the
derivatives of Lyapunov’s functions are estimated. It is well known that Lyapunov-
Razumikhin function method have been widely used in the treatment of the sta-
bility of FDE without impulses [3, 6, 7, 18]. Such a method applied to the inves-
tigation of various type of stability of impulsive functional differential equations
can be found in [10—16].

Preliminary notes and definitions. Let R " be the n-dimensional Euclidean
space with norm|-|; R, =[0,). Let»>0and E={¢ :[-r,0]> R", ¢ (¢)is con-
tinuous everywhere except at finite number of points =1, €[-7,0] at which
¢(t,—0)and ¢(t, +0)existand ¢ (1, —0)=¢ (1, )}. If t > 1, t, € R, we define
x, € Eby x, =x(t+s), v <5 <0. Consider the system of impulsive functional
differential equations

X(O)=f(t,x,), t>t,, t#17,,
Ax (t)=x (14 +0)—x (1} —0) =1, (x (14 =0)), T, > 1o, )

where f:[t,,00)xE—>R"; I, :R" > R";1, <7, With]}i_r)?ork =00,

Let ¢ € E. Denote by x (¢£)=x(;¢,,0), x€R" the solution of system (1)
satisfying the initial conditions :
x(610,0)=9(1—1y), tg—r<t<t,,
x (15 +0; 29, 9) =9 (0) . (2)

The solution x (¢) =x (t; t,,¢) of the initial value problem (1),(2) is characterized
by the following :
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a) for ¢, —r <t <t, the solution x(¢) satisfied the initial conditions (2);

b) in the interval [¢,,0) the solution x (¢ 7,,¢) of problem (1), (2) is a
piecewise continuous function with points of discontinuity of the first kind
t=1,,7T; €[ty, o) at which it is continuous from the left.

Lett, =¢,—r. Introduce the following notations:

Iy =[ty—r,o), G, ={(t,x)elyxR" 1, <t<t, L k=12, . G=UGk.
k=1

Definition 1. We shall say that the function V:7,xR" — R, belongs to the

class Vj if:
1. The function ¥ is continuous in G and locally Lipschitz continuous with
respect to its second argument in each of the sets G, k=1, 2, ...
2.Foreachk=1,2,...and x e R" there exist the finite limits

V(t, —0,x)=limV(t,x),V(t, +0,x)=limV(¢,x).

l*)‘f/\. l‘)'l'k
<1y t>1,

3. The equality V' (t, —0,x) =V (1, ,x)is valid.

In the sequel we will use the next classes of functions:

K ={aeC|[R, R ]:a(r)is strictly increasing and a (0) =0};
I'={heV,:inf h(t,x)=0foreachte/,}.
xeR"

Definition 2. Let 4, 1° €T and define for ¢ € E
hO(Zﬂ(b): sup ho(t+S5¢(S))5

—r<s<0

_ )
h(1,0)= sup h(t+s,0(s)).

—r<s<0

We will use the following definitions of boundedness of the system (1) in
terms of two different measures.
Definition 3. Let s, 1, I'. and A is defined by (3). The system (1) is said to be:

a) (hy, h) — uniformly bounded if
(Va>0)(3p=P(c)>0)(Viy € R, ),
ho(ty,0)<a imples i (2,x (5 t,,0)<P,t=¢,.
b) (ho, h) — quasi uniformly ultimately bounded if
3B>0)(Va>0)3T=T(a)>0)(Vt, €R,),
hy(ty,d)< o imples h(t,x (t;t,,0)<P,t>¢t,+T.
c) (hoy, h) — uniformly ultimately bounded if (a) and (b) hold together.
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We will use also the following classes of functions:
S(h°,p)={(t,x)e I, xR" :h°(1,x)=p,p>0}

S(hg,p)={(1,9) €ltg,0)xE :ho(1,0) 2 p,p >0}

PC[I,xR"]={x:1,— R":x is piecewise continuous with points of discon-
tinuity of the first kind t, ,t, €/, at which it is continuous from the left};

PC! [[ty,),R" ]={x € PC [[t,,%),R" ]:x is continuously differentiable
everywhere except the points T, v, €[t,,0) at which it x (1, —0) and x (7 +0)
existand x (t, —0)=x(t,)};

Q,={xePC [[ty, ), R"]: V (s, x(s)SLIV (t,x (1)), t—r<s<t, t>t,,
V eV,}, where L (u) is continuous on R, nondecreasing in u, and L (u)>u
for u > 0;

Q,={x € PC [[ty,®©),R"]:V (s, x (8)<V (t,x(t)), t—-r<s<t, t>1t,,
Ver,}.

Let VeV, t>ty—r, t#1,, k=1,2,... and xe€ PC[I,,R"]. Introduce the
function

D_V(t,x(t))= 912?* in £ 07 [V (t+0,x(t)+0f (t,x,)) -V (t,x(1))].

Introduce the following assumptions :

Al. The function f: [¢,,00)xE — R" is continuous in[t,_,,t, )xE and for
everyx,eE, k=1,2,... f(t,-0,x,) and f(t, +0,x,)existand f(t, -0,x,)=
=/ (Tp, x,).

A2.1, €C[R",R"], ke N.

A3.ty—r=1,<1,<1,<.. and limt, =co.
k—o

A4. There exists p,, p, =p >0, such that ho(tk X)=p, implies ho(rk +
+0,x+1;(x)=zp, k=1,2, ...

In the proofs of the main theorems we will use the following compari-
son results.

Lemma 1 [15] . Assume the following conditions hold :

1. Assumptions A1 — A3 are valid:

2. gePC|[ty,©)xR,,R]and g (¢,0)=0for t €[t,, o).

3.B,€C[R,.,R,],B,(0)=0and y, (u) =u+B, (u)are nondecreasing with
respecttou, k=1,2, ....

4. The maximal solution » (; ¢, u, ) of the problem

u(t)=g(t,u(r)), t>ty, t#1,,
u(ty+0)=u, 20,
Au(ty)=B;(u(ty)),
is defined in the interval [¢,, ).
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5. The function V' €V, is such that for > ¢, and x e Q, we have
D V(t,x(0)<g(tV(t,x(1), t#1y,

Vit +0,x (T )+ (x (7)) Sy V(T ), x (1)),

and u, 2V (t,+ 0,4 (0)).
6. For the solution x (#; ¢,,¢) of the system (1) we have x € PC [/,,R" ]

NPC'[[ty,%),R"]. Then
V(ta-x (t, th(I))) < I/'([; thuo) for re [tO,OO).
Corollary 1. Let the following conditions hold :

1. Assumptions A1—A3 are met.
2. The function V' €V, is such that for > #;, and x € ; we have

D_V(t,x(1)<0, t#1,.
V(te +0,x (T )+ (x (T ) SV (T, x (t)))
3. Condition 6 of Lemma 1 holds. Then
V(t,x (819,0)) <V (1540, (0), te[zy,%).

Main results. Theorem 1. Assume the following conditions hold :
1. Assumptions A1—A4 are valid: B
2.h,h° eTand h(t,0) <o (hy(t,9)) for some ¢ € K where A, h are defined

by (3).
3. For p>0, there exists /' €V, such that
V(t,x)2a(h(t,x))for(t,x(t)eS (h° p), (4)
V(t+0,x)< b (hy(t,9)) for (¢,0)€ S (hy,p), (5)

where a, be K and a(r)— o as r — .
4. Fort>1,,(t,x (1)) e S(h°, p)and x € Q, we have

DV(t,x(£)<0, t£1,, (6)
Vit +0,x (1 )+ (x (T ) SV (T, x (). (7

Then the system (1) is (g, #) — uniformly bounded.
Proof. Let o >p, be given. Choose 3 =p(c)>0so that

B>max{p,.e (@).a” (b())}.

Let tyeR, and ¢ € E. Consider the solution x(#)=x(z1,,¢) of (1) with
hy(t,,0)<a. By the condition 2 of Theorem 1, we have

R (2o +0,0(0)) < h (£9,0) <@ (1g(£9,0))< ¢ ()<,
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We claim that 42 (¢,x (¢))< B, t > t,,. If it is not true, then there exists some so-
lution x (£) =x (£; ,,0) of (1) with 4y(t,,¢)<o and a” >7, such thatt, <t <

<1, forsome fixed integer kand 4 (¢", x (¢ )) = Pand & (t,x (£))<P, t, <t <T,.
Applying now Corollary 1 for the interval (¢, ]we obtain

V(tx(tty,0))<V (t,+0,4(0)), t(,<t<7,. (8)
Since h°(t, ,x(t,)) > p,, condition A4 shows that
hO(t, +0,x(t, +0))=h"(t, +0,x(t, )+, (x(t, ) =p,
i.e.(t, +0,x(t, +0))e S(h°,p). So the implications (4), (7), (8) and (5) lead to
a(h(t, +0,x (1, +0) <V (1, +0,x (1, +0) =V (1, +0,x (1, )+1, (x (1,)) <
SV (t4,x (1) SV (15+0,0 (0) < b (hy(t,,0))< b (a)< a ().

Therefore 4 (1, +0,x (v, +0))<p. Thus there exist ¢, t,, 1, <t <t, < ¢ such
that B

ho(tl s X (tl )) =a, ho(tla le ):(X, h(t29 X (t2))=Ba h (t2: xzz )=B
and

(t,x (1)) e S (h°,a)NS (h,B),
(t,x,)€ S (hy,a)NS (h,B), te[t,,1,]. )

By (5) we have V(#, +0,x (#,)) =V (¢, x (1,)) < b (hy(t,, x, ) =b(a)<a(P). We
want to show that

V(t,x(t)<aP),telt,t,]. (10)

Suppose that this is not true and let§ =in f {¢, 2 t>¢,:V (¢, x(t)) = a(B)} .

Since V (¢, x(¢)) is continuous at & € (¢, t,] we see that V' (£+0,
x(§+0))>a(P) holds which implies that D _V(§, x(§))>0, which contra-
dicts to (6). Hence (10) holds. On the other hand, using (9) and (4) we have
V(ty,x (1)) 2 a(h(ty,x,,))=a(P), whichcontradicts (10). Thus 7 (¢,x (£))<p,
t > t, for any solution x (¢) =x (¢, ¢,,¢) of (1) with A, (#;,¢)< o and the system
(1) is (49, h) — uniformly bounded. This completes the proof of Theorem 1.

Corollary 2. Let the following conditions hold:

1. Conditions 1, 2 and 3 of Theorem 1 are valid.

2. Condition 4 of Theorem 1 is valid for x € Q.

Then the system (1) is (g, #) — uniformly bounded.

Theorem 2. Assume the following conditions hold :

1. Assumptions A1—A4 are valid.
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2.h,h° eCand/Z (1,§)<¢ (hy(t,0)) for some ¢ € K where A, h are defined

by (3). )

3. Forp >0, there exists V eV, such thata (4 (¢,$)) <V (¢+0,x) < b (hy(t,$))
for (¢, ¢)e S(h,, p), where a, b € Kand a(r)— o asr— oo.

4.Fort=t,,(t,x(t)e S¢(h°,p)andx e Q, wehaveD_V(t,x (1)) <0,t#1,,
V(v +0,x (T )+ (x (7)) <V () ,x (T4 ).

Then the system (1) is (g, #) — uniformly bounded.

The proof of Theorem 2 is analogous to the proof of Theorem 1 and we will
omit it.

Theorem 3. Assume the following conditions hold :

1. Conditions 1, 2 and 3 of Theorem 2 are valid:

2. For t>1t,, (t,x,)eS(hy, p) and x€Q, we have D_V(t, x(1))<
S—c(hy(t,x,), t#7,, V(t, +0,x (v )+, (x (t)) SV (T, x(t4))

Then the system (1) is (g, #) — uniformly ultimately bounded.

Proof. The system (1) is (%o, #) —uniformly bounded by means of Theo-
rem 2. Then there exists a positive number B such that for each ¢, e R,

ho(ty,0)< 8, implies 1 (£,x (£ 1y, $))< B, t > t,.

Now we consider the solution x(#) =x (¢ ¢,,¢) of (1) with /,(¢,,0)< o, where a

is arbitrary number 6, >a >p . Then there exists a positive number B =0 (o) >
>max{p,, ¢ (p),a ' (b(a))}and B< B such that & (z,x (£))<P, > t,.

Now let the function L: R, — R, be a continuous and nondecreasing on R,
and L(u) >uasu>0. We set n=inf {L(u)—u:a(op (p))<u<a(P)}. Then

L(u)>u+nm as a(o(p))<u<a(P) (11)
and we choose the integer v such that
a(e (p))+vn>a (). (12)

If V(t+0,x (¢+0))=a (o (p,)) for some ¢ > ¢, then

V(t,x (1) 2V(t+0,x (1+0)) = a (¢ (pg)) 2 a (e (p)),
b (ho(t,x,)) 2V (t+0,x (t+0)) = a (¢ (pg)) = a (e (p))

and therefore /,(¢,x,)) = b (a(o (p))) =9,. Hence
c(ho(t,x,))2c(8,) =8, (13)

Let us denote &, =¢,+k SE’ k=0,1,2,..,v. We want to prove
2

Vt.x(®)<a(e (p)+H(v=k)n, 12&,, (14)

ISSN 0204-3572. SnekTpoH. moaenupoBaHue. 2008. T. 30. Ne 4 47



I. M. Stamova

forall k=0,1, 2, ..., v. Indeed, using Corollary 1, condition 3 of Theorem 2 and
(12) we obtain

V(t,x(t19,9)) <V (2, +0,6(0)) <
<b(hy(1,0))<b(@)<a(B)<a(o (P)+vn, 1>1,=¢,
that means the validity of (14) for k= 0. Assume (14) to be fulfilled for some in-
tegerk, 0 <k<v,i.e.
V(s,x(s))<a(e (p))+H(v=k)n, s=&;. (15)
We suppose now that V' (#,x (¢)) = a (¢ (p))+(v—k-1)n, &, <t<&,,,. Then
a(@ (p)=V(t,x(1)<V (£, +0,4(0)) <

<b(hy(ty,0)<b(a)<a(B).&y <t<&;,
and (11) and (15) imply

L (&, x(ON>V(t,x (D))4AnZa (@ (p)+H(V=K)N>V(s,x(5)), 5 SS<1<Ey .

Therefore x(1)eQ, as &, <s<¢<¢&,,,. Thencondition 3 of Theorem 3 and (13)
yield
é/H— 1

V(i1 X (Ep N SV(E4+0,x(E, +0)— J.C (ho(s,x (5))) ds<
=

<a(@ (PN +(v=k)N=6,[8;,, —€; 1=a(@ (P) +H(v=k-D)n<V (&, x(E4)),
which Sontradigts to the fact that x(-2 e, as &, <s<t<g,,,. Thereforethere
existst ,&; <t <&, suchthat V(¢ ,x (¢ ))<a(o (p))+(v—k—1)n and con-
dition 2 of Theorem 3 implies V(¢ + 0, x (£ +0))<a (o (p))+(v—k-1)n. We
will prove V(¢ x ())<a(o (p))+(v—k-1)n, t>¢. Supposing the opposite,

we set
pw=inf {r>7¢: V(t, x(£))= a( (p))+(v—k—-1) 1.

It follows from the condition 2 of Theorem 3 thatpu#1t,, k=1, 2, ..., whence
V(p,x (n))=a(e (p))+(v—k—1)n. Then for sufficiently close to zero <0 we
have

V(n+o,x (u+o))<a(o (p))+(v—k-D)n,

whence D _V(u, x (1)) >0. On the other hand, we can prove as above that
x()eQ,ast <s<t<p and therefore D_V(u, x (1)) <-96,<0.
The contradiction we have already obtained yields

Vitx(@)<a(e (p)+(v—k-n, 12&; ;.
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It follows that (14) holds forall k=0, 1, 2, ..., v.LetT =T (o) = v Then
(14) implies 5,
V(t,x(t)<a(o(p)) as t=t,+T. (16)
Finally, condition 3 of Theorem 2 and (16) lead us to

a(h(t,x()))<a(h(t,x,)) <V (t+0,x(t+0)) <
<V(tx(t)<a(o (p))<aP)<a(B)ast=t,+T.

Therefore h(t,,d)< o implies 4 (¢,x(¢))< Bast > t,+7T and (1) is a (ho, h) —
uniformly ultimately bounded system. The proof is completed.

JlocipKeHo 3a1ady 3 MOYATKOBUMH YMOBaMH JUTS IMITYJIbCHUX (DYHKIIIOHATBHUX JTH(epeHItiab-
HUX PIBHSHB 3 KiHLIEBUM 3alli3HIOBAaHHSIM Ta (DIKCOBAHUMH MOMEHTAMHM iMITyJIbCHOTO BIUIMBY. Y
pe3ysbTaTi BAKOPHUCTaHHS KyCKOBO-HEMepepBHUX (yHKIIIi Ta MeToay PasymixiHa 3HaiiieHo noc-
TaTHI YMOBH OOMEXEHOCTI BiJHOCHO [[BOX PI3HHUX KYCKOBO-HETICPEPBHUX KPHUTEPIIB JUIsl TAKUX
piBHsiHB. HaBeieHi pe3ysbTaTi IOTOBHIOOTH Ta MiTBEP/IKYIOTh TaKi, [0 OTPUMAHO paHille.
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